Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 703: 149671, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38367515

RESUMEN

Interleukin-27 (IL-27) is a recently discovered cytokine that has been implicated in inflammatory and metabolic conditions, such as atherosclerosis and insulin resistance. However, the mechanisms by which IL-27 attenuates hepatic lipid accumulation in hyperlipidemic conditions and counteracts endoplasmic reticulum (ER) stress, a known risk factor for impaired hepatic lipid metabolism, have not been elucidated. This in vitro study was designed to examine the effect of IL-27 on hepatic lipid metabolism. The study included the evaluation of lipogenesis-associated proteins and ER stress markers by Western blotting, the determination of hepatic lipid accumulation by Oil Red O staining, and the examination of autophagosome formation by MDC staining. The results showed that IL-27 treatment reduced lipogenic lipid deposition and the expression of ER stress markers in cultured hepatocytes exposed to palmitate. Moreover, treatment with IL-27 suppressed CD36 expression and enhanced fatty acid oxidation in palmitate-treated hepatocytes. The effects of IL-27 on hyperlipidemic hepatocytes were attenuated when adenosine monophosphate-activated protein kinase (AMPK) or 3-methyladenine (3 MA) were inhibited by small interfering RNA (siRNA). These results suggest that IL-27 attenuates hepatic ER stress and fatty acid uptake and stimulates fatty acid oxidation via AMPK/autophagy signaling, thereby alleviating hepatic steatosis. In conclusion, this study identified IL-27 as a promising therapeutic target for nonalcoholic fatty liver disease (NAFLD).


Asunto(s)
Interleucina-27 , Enfermedad del Hígado Graso no Alcohólico , Humanos , Interleucina-27/metabolismo , Interleucina-27/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Hepatocitos/metabolismo , Estrés del Retículo Endoplásmico , Ácidos Grasos/metabolismo , Palmitatos/farmacología , Palmitatos/metabolismo
2.
J Cell Physiol ; 239(4): e31184, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197464

RESUMEN

Interleukin-38 (IL-38), recently recognized as a cytokine with anti-inflammatory properties that mitigate type 2 diabetes, has been associated with indicators of insulin resistance and nonalcoholic fatty liver disease (NAFLD). This study investigated the impact of IL-38 on hepatic lipid metabolism and endoplasmic reticulum (ER) stress. We assessed protein expression levels using Western blot analysis, while monodansylcadaverine staining was employed to detect autophagosomes in hepatocytes. Oil red O staining was utilized to examine lipid deposition. The study revealed elevated serum IL-38 levels in high-fat diet (HFD)-fed mice and IL-38 secretion from mouse keratinocytes. IL-38 treatment attenuated lipogenic lipid accumulation and ER stress markers in hepatocytes exposed to palmitate. Furthermore, IL-38 treatment increased AMP-activated protein kinase (AMPK) phosphorylation and autophagy. The effects of IL-38 on lipogenic lipid deposition and ER stress were nullified in cultured hepatocytes by suppressing AMPK through small interfering (si) RNA or 3-methyladenine (3MA). In animal studies, IL-38 administration mitigated hepatic steatosis by suppressing the expression of lipogenic proteins and ER stress markers while reversing AMPK phosphorylation and autophagy markers in the livers of HFD-fed mice. Additionally, AMPK siRNA, but not 3MA, mitigated IL-38-enhanced fatty acid oxidation in hepatocytes. In summary, IL-38 alleviates hepatic steatosis through AMPK/autophagy signaling-dependent attenuation of ER stress and enhancement of fatty acid oxidation via the AMPK pathway, suggesting a therapeutic strategy for treating NAFLD.


Asunto(s)
Estrés del Retículo Endoplásmico , Interleucina-8 , Enfermedad del Hígado Graso no Alcohólico , Obesidad , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Palmitatos/farmacología , ARN Interferente Pequeño/metabolismo , Interleucina-8/farmacología , Interleucina-8/uso terapéutico
3.
J Transl Med ; 22(1): 38, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195611

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is an irreversible eye disease that can cause blurred vision. Regular exercise has been suggested as a therapeutic strategy for treating AMD, but how exercise improves AMD is not yet understood. This study investigated the protective effects of developmental endothelial locus-1 (DEL-1), a myokine upregulated during exercise, on endoplasmic reticulum (ER) stress-induced injury in retinal pigment epithelial cells. METHODS: We evaluated the levels of AMPK phosphorylation, autophagy markers, and ER stress markers in DEL-1-treated human retinal pigment epithelial cells (hRPE) using Western blotting. We also performed cell viability, caspase 3 activity assays, and autophagosome staining. RESULTS: Our findings showed that treatment with recombinant DEL-1 dose-dependently reduced the impairment of cell viability and caspase 3 activity in tunicamycin-treated hRPE cells. DEL-1 treatment also alleviated tunicamycin-induced ER stress markers and VEGF expression. Moreover, AMPK phosphorylation and autophagy markers were increased in hRPE cells in the presence of DEL-1. However, the effects of DEL-1 on ER stress, VEGF expression, and apoptosis in tunicamycin-treated hRPE cells were reduced by AMPK siRNA or 3-methyladenine (3-MA), an autophagy inhibitor. CONCLUSIONS: Our study suggests that DEL-1, a myokine, may have potential as a treatment strategy for AMD by attenuating ER stress-induced injury in retinal pigment epithelial cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Degeneración Macular , Humanos , Caspasa 3 , Tunicamicina/farmacología , Factor A de Crecimiento Endotelial Vascular , Degeneración Macular/terapia , Mioquinas , Células Epiteliales , Pigmentos Retinianos
4.
Biochem Biophys Res Commun ; 691: 149293, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016337

RESUMEN

CTRP4, identified as an adipokine, has demonstrated notable anti-inflammatory and anti-obesity effects in various disease models. Consequently, our research sought to explore the impact of CTRP4 on inflammation and the interaction between endothelial cells and monocytes in hyperlipidemic conditions. Using Western blotting, we assessed the expression levels of various proteins in HUVECs and THP-1 monocytes. Our study findings indicate that treatment with CTRP4 effectively mitigated the attachment of THP-1 monocytes to HUVECs. Furthermore, it reduced the expression of adhesion molecules and inflammation indicators in experimental cells exposed to hyperlipidemic conditions. Notably, CTRP4 treatment led to an increase in SIRT6 expression and the nuclear translocation of Nrf2. Interestingly, when SIRT6 or Nrf2 was silenced using siRNA, the positive effects of CTRP4 in HUVECs and THP-1 cells were nullified. Our results suggest that CTRP4 exhibits anti-inflammatory properties, thereby improving the interaction between endothelial cells and monocytes through the SIRT6/Nrf2-dependent pathway. This study provides insights into CTRP4 as a potential therapeutic target for mitigating obesity-related atherosclerosis.


Asunto(s)
Monocitos , Sirtuinas , Humanos , Monocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Adhesión Celular , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/metabolismo , Sirtuinas/metabolismo
5.
Inflammation ; 47(1): 1-12, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737929

RESUMEN

Musclin, a myokine, undergoes modulation during exercise and has demonstrated anti-inflammatory effects in cardiomyocytes and glomeruli. However, its role in atherosclerotic responses remains unclear. This study aimed to explore the impact of musclin on inflammatory responses and the interaction between endothelial cells and monocytes under hyperlipidemic conditions. The attachment levels of THP-1 monocytes on cultured HUVECs were examined. Inflammation and the expression of cell adhesion molecules were also evaluated. To explore the molecular mechanisms of musclin, PPARα or heme oxygenase 1 (HO-1) siRNA transfection was performed in HUVECs. The results revealed that treatment with recombinant musclin effectively suppressed the attachment of palmitate-induced HUVECs to THP-1 cells and reduced the expression of cell adhesion proteins (ICAM-1, VCAM-1, and E-selectin) in HUVECs. Furthermore, musclin treatment ameliorated the expression of inflammation markers (phosphorylated NFκB and IκB) in both HUVECs and THP-1 monocytes, as well as the release of TNFα and MCP-1 from HUVECs and THP-1 monocytes. Notably, musclin treatment augmented the expression levels of PPARα and HO-1. However, when PPARα or HO-1 siRNA was employed, the beneficial effects of musclin on inflammation, cell attachment, and adhesion molecule expression were abolished. These findings indicate that musclin exerts anti-inflammatory effects via the PPARα/HO-1 pathway, thereby mitigating the interaction between endothelial cells and monocytes. This study provides evidence supporting the important role of musclin in ameliorating obesity-related arteriosclerosis and highlights its potential as a therapeutic agent for treating arteriosclerosis.


Asunto(s)
Arteriosclerosis , Monocitos , Humanos , Monocitos/metabolismo , PPAR alfa/metabolismo , Células Endoteliales/metabolismo , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo , Moléculas de Adhesión Celular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Antiinflamatorios/farmacología , Arteriosclerosis/metabolismo , ARN Interferente Pequeño/farmacología , Adhesión Celular , Molécula 1 de Adhesión Celular Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana
6.
Tissue Cell ; 86: 102275, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979397

RESUMEN

The prevalence of tendinopathy in patients with diabetes is well documented. Despite efforts to improve diabetes management, there is a lack of research on therapeutic agents targeting the core features of tendinopathy, namely, tenocyte apoptosis and extracellular matrix (ECM) damage. In this study, we investigated the potential of ginsenoside compound K (CK), known for its antidiabetic properties, to mitigate tenocyte apoptosis, inflammation, oxidative stress, and the metalloproteinase (MMP) system under hyperglycemic conditions. Our research also aimed to unravel the molecular mechanism underlying the effects of CK. The assessment of apoptosis involved observing intracellular chromatin condensation and measuring caspase 3 activity. To gauge oxidative stress, we examined cellular ROS levels and hydrogen peroxide and malondialdehyde concentrations. Western blotting was employed to determine the expression of various proteins. Our findings indicate that CK treatment effectively countered high glucose-induced apoptosis, inflammation, and oxidative stress in cultured tenocytes. Furthermore, CK normalized the expression of MMP-9, MMP-13, and TIMP-1. Notably, CK treatment boosted the expression of PPARγ and antioxidant enzymes. We conducted small interfering (si) RNA experiments targeting PPARγ, revealing its role in mediating CK's effects on tendinopathy features in hyperglycemic tenocytes. In conclusion, these in vitro results offer valuable insights into the potential therapeutic role of CK in managing tendinopathy among individuals with diabetes. By addressing crucial aspects of tendinopathy, CK presents itself as a promising avenue for future research and treatment development in this domain.


Asunto(s)
Diabetes Mellitus , Ginsenósidos , Tendinopatía , Humanos , Tenocitos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/farmacología , PPAR gamma/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Matriz Extracelular/metabolismo , Apoptosis , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Inflamación/metabolismo
7.
Biochem Biophys Res Commun ; 694: 149407, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38154209

RESUMEN

Interleukin-38 (IL-38), a member of the IL-1 family, is known for its anti-inflammatory properties mediated through ligand signaling in various disease models. It plays a significant role in atherosclerosis development, forming a theoretical basis for therapeutic strategies. However, the direct effects of IL-38 on atherogenic responses in the vascular endothelium and monocytes remain unclear. In this investigation, IL-38 treatment reduced THP-1 monocyte adhesion to HUVECs, decreased the expression of vascular adhesion molecules, and mitigated inflammation in the presence of palmitate. IL-38 treatment upregulated SIRT6 expression and enhanced autophagy markers such as LC3 conversion and p62 degradation. The effects of IL-38 were nullified by siRNA-mediated suppression of SIRT6 or heme oxygenase-1 (HO-1) in HUVECs and palmitate-treated THP-1 cells. These findings reveal that IL-38 mitigates inflammation through the SIRT6/HO-1 pathway, offering a potential therapeutic approach for addressing obesity-related atherosclerosis.


Asunto(s)
Aterosclerosis , Sirtuinas , Humanos , Aterosclerosis/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/metabolismo , Interleucinas , Obesidad/complicaciones , Palmitatos , Sirtuinas/genética , Sirtuinas/metabolismo
8.
Biochem Biophys Res Commun ; 682: 104-110, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37806247

RESUMEN

Hyperglycemia, characterized by high blood glucose levels resulting from pancreatic beta cell dysfunction or impaired insulin signaling, is a contributing factor in the development of diabetic nephropathy. This study aimed to investigate the effects of C1q/TNF-related protein 4 (CTRP4), known for its anti-obesity and anti-inflammatory properties in various disease models, on podocyte apoptosis and endoplasmic reticulum (ER) stress in the presence of elevated glucose levels. The expression levels of various proteins in podocytes and adipocytes were evaluated by Western blotting. Autophagosomes in podocytes were stained by MDC. Chromatin condensation in podocytes was examined by Hoechst staining. The research revealed increased expression of CTRP4 in 3T3-L1 adipocytes and CIHP-1 podocytes exposed to high glucose (HG) conditions. Treatment with CTRP4 effectively mitigated HG-induced apoptosis and ER stress and normalized epithelial-to-mesenchymal transition (EMT) markers in CIHP-1 cells. Furthermore, elevated levels of AMPK phosphorylation and autophagy were observed in CIHP-1 cells treated with CTRP4. Silencing of AMPK or the use of 3-methyl adenine (3 MA) reduced the impacts of CTRP4 on apoptosis, EMT markers and ER stress in CIHP-1 cells. In conclusion, these findings suggest that CTRP4 alleviates ER stress in podocytes under hyperglycemic conditions, leading to the suppression of apoptosis and the restoration of EMT through AMPK/autophagy-mediated signaling. These insights provide valuable information for the development of therapeutic strategies for diabetic nephropathy.


Asunto(s)
Nefropatías Diabéticas , Podocitos , Humanos , Podocitos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Nefropatías Diabéticas/metabolismo , Transición Epitelial-Mesenquimal , Apoptosis , Autofagia , Glucosa/farmacología , Glucosa/metabolismo
9.
Biochem Pharmacol ; 217: 115815, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37741512

RESUMEN

Hepatic endoplasmic reticulum (ER) stress is a contributing factor in the development of hepatic steatosis in obesity. Madecassoside (MA), a pentacyclic triterpene derived from Centella asiatica, is known for its anti-inflammatory properties in the treatment of skin wounds. However, the impact of MA on hepatic ER stress and lipid metabolism in experimental obesity models has not been investigated. In this study, we examined the effects of MA on primary hepatocytes treated with palmitate and the livers of mice fed a high-fat diet (HFD). Our findings demonstrated that MA treatment reduced lipogenic lipid accumulation, apoptosis, and ER stress in hepatocytes. Additionally, MA treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and markers of autophagy. Importantly, when AMPK was inhibited by small interfering RNA (siRNA) or autophagy was blocked by 3-methyladenine (3MA), the protective effects of MA against ER stress, lipogenic lipid deposition, and apoptosis in palmitate-treated hepatocytes were abolished. These results suggest that MA mitigates hepatic steatosis in obesity through an AMPK/autophagy-dependent pathway. The present study highlights the potential of MA as a promising therapeutic candidate for hepatic steatosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Hígado Graso , Animales , Ratones , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Dieta Alta en Grasa/efectos adversos , Células Hep G2 , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Palmitatos/metabolismo , Autofagia , Obesidad/metabolismo , Ratones Endogámicos C57BL , Estrés del Retículo Endoplásmico
10.
J Ginseng Res ; 47(3): 400-407, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37252277

RESUMEN

Background: Rb3 is a ginsenoside with anti-inflammatory properties in many cell types and has been reported to attenuate inflammation-related metabolic diseases such as insulin resistance, nonalcoholic fatty liver disease, and cardiovascular disease. However, the effect of Rb3 on podocyte apoptosis under hyperlipidemic conditions, which contributes to the development of obesity-mediated renal disease, remains unclear. In the current study, we aimed to investigate the effect of Rb3 on podocyte apoptosis in the presence of palmitate and explore its underlying molecular mechanisms. Methods: Human podocytes (CIHP-1 cells) were exposed to Rb3 in the presence of palmitate as a model of hyperlipidemia. Cell viability was assessed by MTT assay. The effects of Rb3 on the expression of various proteins were analyzed by Western blotting. Apoptosis levels were determined by MTT assay, caspase 3 activity assay, and cleaved caspase 3 expression. Results: We found that Rb3 treatment alleviated the impairment of cell viability and increased caspase 3 activity as well as inflammatory markers in palmitate-treated podocytes. Treatment with Rb3 dose-dependently increased PPARδ and SIRT6 expression. Knockdown of PPARδ or SIRT6 reduced the effects of Rb3 on apoptosis as well as inflammation and oxidative stress in cultured podocytes. Conclusions: The current results suggest that Rb3 alleviates inflammation and oxidative stress via PPARδ- or SIRT6-mediated signaling, thereby attenuating apoptosis in podocytes in the presence of palmitate. The present study provides Rb3 as an effective strategy for treating obesity-mediated renal injury.

11.
Biochem Biophys Res Commun ; 658: 62-68, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37023616

RESUMEN

Musclin, an exercise-responsive myokine, has the ability to attenuate inflammation, oxidative stress, and apoptosis in cardiomyocytes under pathogenic conditions. While the potential benefits of musclin in the cardiovascular system have been well documented, its effects on hepatic endoplasmic reticulum (ER) stress and lipid metabolism are not fully understood. The present study showed that musclin treatment reduced lipid accumulation and lipogenic protein expression in primary hepatocytes exposed to palmitate. Palmitate treatment led to an increase in markers of ER stress, which was reversed by musclin treatment. Musclin treatment increased SIRT7 expression and markers of autophagy in a dose-dependent manner. Small interfering (si) RNA of SIRT7 or 3-methyladenine (3 MA) reduced the effects of musclin on lipogenic lipid deposition in hepatocytes under hyperlipidemic conditions. These findings suggest that musclin can suppress palmitate-induced ER stress by upregulating SIRT7 and autophagy signaling, thereby alleviating lipid accumulation in primary hepatocytes. The current study provides a potential therapeutic strategy for the treatment of liver diseases characterized by lipid accumulation and ER stress, such as nonalcoholic fatty liver disease (NAFLD).


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Sirtuinas , Humanos , Hepatocitos/metabolismo , Hígado/metabolismo , Estrés del Retículo Endoplásmico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Autofagia , Palmitatos/farmacología , Palmitatos/metabolismo , Sirtuinas/metabolismo
12.
J Cell Physiol ; 238(5): 966-975, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36890751

RESUMEN

Gremlin-1 (GR1) is a novel adipokine that is highly expressed in human adipocytes and has been shown to inhibit the BMP2/4-TGFb signaling pathway. It has an effect on insulin sensitivity. Elevated levels of Gremlin have been shown to lead to insulin resistance in skeletal muscle, adipocytes, and hepatocytes. In this study, we investigated the effect of GR1 on hepatic lipid metabolism under hyperlipidemic conditions and explored the molecular mechanisms associated with GR1 by in vitro and in vivo studies. We found that palmitate increased GR1 expression in visceral adipocytes. Recombinant GR1 increased lipid accumulation, lipogenesis, and ER stress markers in cultured primary hepatocytes. Treatment with GR1 increased EGFR expression and mTOR phosphorylation and reduced autophagy markers. EGFR or rapamycin siRNA reduced the effects of GR1 on lipogenic lipid deposition and ER stress in cultured hepatocytes. Administration of GR1 via the tail vein induced lipogenic proteins and ER stress while suppressing autophagy in the livers of experimental mice. Suppression of GR1 by in vivo transfection reduced the effects of a high-fat diet on hepatic lipid metabolism, ER stress, and autophagy in mice. These results suggest that the adipokine GR1 promotes hepatic ER stress due to the impairment of autophagy, ultimately causing hepatic steatosis in the obese state. The current study demonstrated that targeting GR1 may be a potential therapeutic approach for treating metabolic diseases, including metabolic-associated fatty liver disease (MAFLD).


Asunto(s)
Adipoquinas , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Adipoquinas/metabolismo , Autofagia , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico , Receptores ErbB/metabolismo , Metabolismo de los Lípidos/genética , Lípidos/farmacología , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Transducción de Señal/genética , Regulación hacia Arriba
13.
Biochem Biophys Res Commun ; 648: 59-65, 2023 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-36736092

RESUMEN

Oroxylin-A (OA) is an O-methylated flavone that has been demonstrated to have anti-inflammatory properties in various disease models. However, the roles of OA in hepatic lipid metabolism and the specific molecular mechanisms by which it exerts these effects are not yet fully understood. In the current study, we aimed to investigate the effects of OA on hepatic lipid deposition and apoptosis, which play a pivotal role in the development of nonalcoholic fatty liver disease (NAFLD) in obesity in vitro models. We found that treatment with OA attenuated lipid accumulation, the expression of lipogenesis-associated proteins and apoptosis in palmitate-treated primary mouse hepatocytes. OA treatment suppressed phosphorylated NFκB and IκB expression in as well as TNFα and MCP-1 release from hepatocytes treated with palmitate. Treatment of hepatocytes with OA augmented AMPK phosphorylation and FGF21 expression. siRNA of AMPK or FGF21 abolished the effects of OA on inflammation as well as lipid accumulation and apoptosis in hepatocytes under palmitate treatment conditions. In conclusion, OA improves inflammation through the AMPK/FGF21 pathway, thereby attenuating lipid accumulation and apoptosis in hepatocytes. This study may help identify new targets for developing treatments for NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Inflamación/metabolismo , Palmitatos/farmacología , Palmitatos/metabolismo , Apoptosis , Ratones Endogámicos C57BL
14.
J Med Food ; 26(3): 193-200, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36827085

RESUMEN

Humulus japonicus has been used to treat obesity, hypertension, and nonalcoholic fatty liver and to alleviate inflammation and oxidative stress. In the present study, we aimed to investigate the effects of H. japonicus ethanol extracts (HE) and luteolin 7-O-ß-d-glucoside (LU), which is identified as a major active component of H. japonicus, on ethanol-induced oxidative stress and lipid accumulation in primary hepatocytes. Mouse primary hepatocytes were treated with HE and stimulated with ethanol. The MTT test was used to determine cell viability. By using Western blotting, the effects of HE on the expression of different proteins were investigated. Experimental mice were given a 5% alcohol liquid Lieber-DeCarli diet to induce alcoholic fatty liver. We found that both HE and LU individually attenuated ethanol-induced lipid accumulation, lipogenic protein expression, and cellular oxidative stress in hepatocytes. Treatment with HE or LU increased PPARα and SOD1 expression and catalase activity in a dose-dependent manner. Small interfering RNA of PPARα reduced the effects of HE on oxidative stress, lipid metabolism, and levels of antioxidants. We also observed that orally administered HE treatment alleviated hepatic steatosis in a diet containing ethanol-fed mice. This study suggests HE as a functional food that can improve hepatic steatosis, thereby preventing hepatic injury caused by alcohol consumption.


Asunto(s)
Humulus , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/metabolismo , Etanol/metabolismo , Hepatocitos/metabolismo , Lípidos , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Estrés Oxidativo , PPAR alfa/genética , PPAR alfa/metabolismo
15.
Biochem Biophys Res Commun ; 642: 113-117, 2023 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-36566562

RESUMEN

Musclin (MUS), an exercise-responsive myokine, has been documented to attenuate inflammation and enhance physical endurance. However, the effects of MUS on differentiation and related molecular mechanisms in adipocytes have not yet been studied. In this study, we found that treatment with MUS attenuated lipid accumulation in fully differentiated 3T3-L1 cells. Furthermore, MUS treatment enhanced lipolysis assessed by glycerol release, and caused apoptosis, whereas it reduced the expression of lipogenic proteins, such as PPARγ and processed SREBP1. Treatment with MUS augmented phosphorylated PKA expression, whereas suppressed p38 phosphorylation in 3T3-L1 adipocytes. H89, a selective PKA inhibitor reduced the effects of MUS on lipogenic lipid accumulation as well as lipolysis except for apoptosis. These results suggest that MUS promotes lipolysis and suppresses lipogenesis through a PKA/p38-dependent pathway, thereby ameliorating lipid deposition in cultured adipocytes. The current study offers the potential of MUS as a therapeutic approach for treating obesity with few side effects.


Asunto(s)
Lipogénesis , Lipólisis , Animales , Ratones , Células 3T3-L1 , Regulación hacia Arriba , Adipocitos/metabolismo , Lípidos/farmacología , Adipogénesis
16.
Bone Joint Res ; 11(12): 854-861, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36458454

RESUMEN

AIMS: Myokine developmental endothelial locus-1 (DEL-1) has been documented to alleviate inflammation and endoplasmic reticulum (ER) stress in various cell types. However, the effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes remain unclear. METHODS: Human primary tenocytes were cultured in palmitate (400 µM) and palmitate plus DEL-1 (0 to 2 µg/ml) conditions for 24 hours. The expression levels of ER stress markers and cleaved caspase 3, as well as phosphorylated 5' adenosine monophosphate-activated protein kinase (AMPK) and autophagy markers, were assessed by Western blotting. Autophagosome formation was measured by staining with monodansylcadaverine, and apoptosis was determined by cell viability assay and caspase 3 activity assay. RESULTS: We found that treatment with DEL-1 suppressed palmitate-induced inflammation, ER stress, and apoptosis in human primary tenocytes. DEL-1 treatment augmented LC3 conversion and p62 degradation as well as AMPK phosphorylation. Moreover, small interfering RNA for AMPK or 3-methyladenine (3-MA), an autophagy inhibitor, abolished the suppressive effects of DEL-1 on inflammation, ER stress, and apoptosis in tenocytes. Similar to DEL-1, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, also attenuated palmitate-induced inflammation, ER stress, and apoptosis in tenocytes, which 3-MA reversed. CONCLUSION: These results revealed that DEL-1 suppresses inflammation and ER stress, thereby attenuating tenocyte apoptosis through AMPK/autophagy-mediated signalling. Thus, regular exercise or administration of DEL-1 may directly contribute to improving tendinitis exacerbated by obesity and insulin resistance.Cite this article: Bone Joint Res 2022;11(12):854-861.

17.
Life Sci ; 311(Pt B): 121149, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36400204

RESUMEN

AIMS: The current study investigated whether netrin-1 can attenuate hepatic steatosis through PPARγ/autophagy-mediated suppression of inflammation and endoplasmic reticulum (ER) stress in experimental animal models. MAIN METHODS: Hepatic steatosis was induced by a high-fat diet in experimental mice. Recombinant mouse netrin-1 was administered via the tail vein (1 µg/mouse, once every two days). Serum inflammatory cytokines and hepatic inflammatory and ER stress markers were determined in mice using ELISA and western blotting protocol. KEY FINDINGS: We found that netrin-1 expression was significantly increased (P < 0.05) in cultured macrophages treated with supernatants of subcutaneous adipocytes in the presence of palmitate and subcutaneous fat of obese mice. Recombinant netrin-1 treatment promoted PPARγ expression and autophagy, thereby attenuating inflammation and ER stress, lipid accumulation, and the expression of lipogenic proteins in mouse primary hepatocytes. High-fat diet (HFD) treatment increased hepatic inflammation and ER stress, causing hepatic steatosis in experimental mice. However, administration of netrin-1 reversed the effects of HFD on hepatic ER stress and lipid deposition. SIGNIFICANCE: These results suggest that subcutaneous adipose macrophage-derived netrin-1 ameliorates inflammation and ER stress in the liver, which in turn alleviates hepatic steatosis by enhancing basal PPARγ/autophagy-dependent signaling. The current study sheds light on the pathogenesis of hepatic steatosis in obesity and provides a promising therapeutic approach for treating metabolic-associated fatty liver disease (MAFLD).


Asunto(s)
Hígado Graso , PPAR gamma , Animales , Ratones , Hígado Graso/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Netrina-1 , Palmitatos , Retículo Endoplásmico/metabolismo
18.
J Cell Physiol ; 237(11): 4226-4237, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36087347

RESUMEN

Recently, sclerostin (SCL), a circulating glycoprotein, was proposed to be a novel myokine involved in developing metabolic disorders. The association between SCL levels and insulin resistance in skeletal muscle, liver, and adipose tissue was studied in individuals with aggravated glucose tolerance. Thus, we hypothesized that elevated circulating SCL might affect skeletal muscle insulin signaling and hepatic lipid metabolism, and aimed to investigate the effects of SCL on skeletal muscle insulin resistance and hepatic steatosis in obesity using in vitro and in vivo experimental models under hyperlipidemic conditions. In the current study, we found elevated SCL messenger RNA expression levels in myocytes in obese patients. In addition to a higher blood level, SCL was expressed at an elevated level in the skeletal muscle of mice fed a high-fat diet (HFD). Higher SCL release levels and expression were also noticed in palmitate-treated C2C12 myocytes. SCL suppression by in vivo transfection improves skeletal muscle insulin resistance and hepatic steatosis in HFD-fed mice. The treatment of C2C12 myocytes with recombinant SCL aggravated insulin signaling. Furthermore, treatment with SCL augmented lipogenic lipid deposition in human primary hepatocytes. Treatment with SCL upregulated mammalian target of rapamycin (mTOR) phosphorylation and suppressed autophagy markers, thereby causing endoplasmic reticulum (ER) stress. 4-Phenylbutyric acid, a pharmacological ER stress inhibitor, abolished the effects of SCL on insulin signaling in C2C12 myocytes and lipid accumulation in primary hepatocytes. In conclusion, SCL promotes skeletal muscle insulin resistance and hepatic steatosis by upregulating ER stress via the mTOR/autophagy-mediated pathway. The present study suggests that antagonizing SCL might be a novel therapeutic strategy for simultaneously managing insulin resistance and hepatic steatosis in obesity.


Asunto(s)
Hígado Graso , Resistencia a la Insulina , Humanos , Ratones , Animales , Regulación hacia Arriba , Insulina , Serina-Treonina Quinasas TOR , Estrés del Retículo Endoplásmico , Autofagia , Músculo Esquelético , Dieta Alta en Grasa/efectos adversos , Obesidad , Lípidos , Ratones Endogámicos C57BL , Mamíferos
19.
Biochem Pharmacol ; 203: 115203, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35948170

RESUMEN

Resolvin D3 (RD3), an endogenous lipid mediator derived from omega-3 fatty acids, has been documented to attenuate inflammation in various disease models. Although it has been reported that omega-3 fatty acids attenuate metabolic disorders, the roles of RD3 in insulin signaling in skeletal muscle and hepatic lipid metabolism remain unclear. In the current study, we examined the role of RD3 in skeletal muscle insulin resistance and hepatic steatosis using in vitro and in vivo obesity models. In mouse primary hepatocytes, RD3 treatment reduced lipid accumulation and the production of lipogenic proteins (processed SREBP1 and SCD1) while improving insulin signaling in C2C12 myocytes. Furthermore, RD3 treatment ameliorated palmitate-induced ER stress markers (phospho-eIF2α and CHOP) in mouse primary hepatocytes and C2C12 myocytes. Treatment with RD3 increased phospho-AMPK expression and autophagy markers (LC3 conversion, p62 degradation, and autophagosome formation). AMPK siRNA or 3-MA reduced the effects of RD3 on C2C12 myocytes and mouse primary hepatocytes treated with palmitate. Finally, we confirmed the therapeutic effects of RD3 on skeletal muscle insulin resistance and hepatic lipid metabolism in high-fat diet (HFD)-fed mice. In vivo transfection-mediated suppression of AMPK restored all these changes in animal models. The results of the present study suggest that RD3 alleviates insulin resistance in skeletal muscle and hepatic steatosis via AMPK/autophagy signaling and provides an effective and safe therapeutic approach for treating metabolic disorders, including insulin resistance, type 2 diabetes, and NAFLD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos Omega-3 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Autofagia , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Estrés del Retículo Endoplásmico , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados/metabolismo , Insulina/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacología , Palmitatos/uso terapéutico
20.
Biochem Biophys Res Commun ; 608: 142-148, 2022 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-35398611

RESUMEN

Abietic acid (AA), the main component of pine resin that has been traditionally used as Asian medicine, has been reported to demonstrate anti-inflammatory activities. Despite this, little is known about the effects of AA on hepatic endoplasmic reticulum (ER) stress and lipid metabolism. This study investigated the impacts of AA on ER stress and steatosis in in vitro obesity models. We found that Treatment with AA reduced lipid deposition and lipogenesis-related proteins expression in human primary hepatocytes. Augmented expression of ER stress markers (phospho-eukaryotic initiation factor-2α (eIF2α) and C/EBP homologous protein (CHOP)) in palmitate-treated hepatocytes were reversed by AA treatment. Further, AA treatment increased the expression of phospho-AMPK and oxygen-regulated protein 150 (ORP150) in hepatocytes. siRNA-associated knockdown of AMPK or ORP150 expression reduced the effects of AA on not only hepatic ER stress but also lipogenesis and apoptosis. These results denote that AA attenuates lipid accumulation in hepatocytes in the presence of palmitate through the suppression of ER stress by AMPK/ORP150 signaling. AA could be a potential candidate for treating non-alcoholic fatty liver disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Abietanos , Estrés del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico , Hepatocitos , Proteínas Quinasas Activadas por AMP/metabolismo , Abietanos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/metabolismo , Hepatocitos/metabolismo , Humanos , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxígeno/metabolismo , Palmitatos/metabolismo , Palmitatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...