Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
ACS Nano ; 18(5): 4559-4569, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38264984

RESUMEN

The oxidation of copper and its surface oxides are gaining increasing attention due to the enhanced CO2 reduction reaction (CO2RR) activity exhibited by partially oxidized copper among the copper-based catalysts. The "8" surface oxide on Cu(111) is seen as a promising structure for further study due to its resemblance to the highly active Cu2O(110) surface in the C-C coupling of the CO2RR, setting it apart from other O/Cu(111) surface oxides resembling Cu2O(111). However, recent X-ray photoelectron spectroscopy analysis challenges the currently accepted atomic structure of the "8" surface oxide, prompting a need for reevaluation. This study highlights the limitations of conventional methods when addressing such challenges, leading us to adopt global optimization search techniques. After a rigorous process to ensure robustness, the unbiased global minimum of the "8" surface oxide is identified. Interestingly, this configuration differs significantly from other surface oxides and also from previous "8" models while retaining similarities to the Cu2O(110) surface.

2.
Toxins (Basel) ; 15(10)2023 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-37888618

RESUMEN

Okadaic acid (OA) and its analogues cause diarrhetic shellfish poisoning (DSP) in humans, and risk assessments of these toxins require toxicity equivalency factors (TEFs), which represent the relative toxicities of analogues. However, no human death by DSP toxin has been reported, and its current TEF value is based on acute lethality. To properly reflect the symptoms of DSP, such as diarrhea without death, the chronic toxicity of DSP toxins at sublethal doses should be considered. In this study, we obtained acute oral LD50 values for OA and dinophysistoxin-1 (DTX-1) (1069 and 897 µg/kg, respectively) to set sublethal doses. Mice were treated with sublethal doses of OA and DTX-1 for 7 days. The mice lost body weight, and the disease activity index and intestinal crypt depths increased. Furthermore, these changes were more severe in OA-treated mice than in the DTX-1-treated mice. Strikingly, ascites was observed, and its severity was greater in mice treated with OA. Our findings suggest that OA is at least as toxic as DTX-1 after repeated oral administration at a low dose. This is the first study to compare repeated oral dosing of DSP toxins. Further sub-chronic and chronic studies are warranted to determine appropriate TEF values for DSP toxins.


Asunto(s)
Intoxicación por Mariscos , Humanos , Animales , Ratones , Ácido Ocadaico/toxicidad , Dosificación Letal Mediana , Diarrea , Piranos/toxicidad
3.
ACS Appl Mater Interfaces ; 15(33): 39614-39624, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37556112

RESUMEN

Bioelectronic devices that offer real-time measurements, biological signal processing, and continuous monitoring while maintaining stable performance are in high demand. The materials used in organic electrochemical transistors (OECTs) demonstrate high transconductance (GM) and excellent biocompatibility, making them suitable for bioelectronics in a biological environment. However, ion migration in OECTs induces a delayed response time and low cut-off frequency, and the adverse biological environment causes OECT durability problems. Herein, we present OECTs with a faster response time and improved durability, made possible by using a nanofiber mat channel of a conventional OECT structure. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/polyacrylamide (PAAm) nanofiber mat channel OECTs are fabricated and subjected to various durability tests for the first time based on continuous measurements and mechanical stability assessments. The results indicate that the nanofiber mat channel OECTs have a faster response time and longer life spans compared to those of film channel OECTs. The improvements can be attributed to the increased surface area and fibrous structure of the nanofiber mat channel. Furthermore, the hydrogel helps to maintain the structure of the nanofiber, facilitates material exchange, and eliminates the need for a crosslinker.

4.
Redox Biol ; 64: 102783, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348157

RESUMEN

Oxidative stress due to abnormal accumulation of reactive oxygen species (ROS) is an initiator of a large number of human diseases, and thus, the elimination and prevention of excessive ROS are important aspects of preventing the development of such diseases. Nuclear factor erythroid 2-related factor 2 (NRF2) is an essential transcription factor that defends against oxidative stress, and its function is negatively controlled by Kelch-like ECH-associated protein 1 (KEAP1). Therefore, activating NRF2 by inhibiting KEAP1 is viewed as a strategy for combating oxidative stress-related diseases. Here, we generated a cereblon (CRBN)-based proteolysis-targeting chimera (PROTAC), which we named SD2267, that induces the proteasomal degradation of KEAP1 and leads to NRF2 activation. As was intended, SD2267 bound to KEAP1, recruited CRBN, and induced the degradation of KEAP1. Furthermore, the KEAP1 degradation efficacy of SD2267 was diminished by MG132 (a proteasomal degradation inhibitor) but not by chloroquine (an autophagy inhibitor), which suggested that KEAP1 degradation by SD2267 was proteasomal degradation-dependent and autophagy-independent. Following KEAP1 degradation, SD2267 induced the nuclear translocation of NRF2, which led to the expression of NRF2 target genes and attenuated ROS accumulation induced by acetaminophen (APAP) in hepatocytes. Based on in vivo pharmacokinetic study, SD2267 was injected intraperitoneally at 1 or 3 mg/kg in APAP-induced liver injury mouse model. We observed that SD2267 degraded hepatic KEAP1 and attenuated APAP-induced liver damage. Summarizing, we described the synthesis of a KEAP1-targeting PROTAC (SD2267) and its efficacy and mode of action in vitro and in vivo. The results obtained suggest that SD2267 could be used to treat hepatic diseases related to oxidative stress.


Asunto(s)
Acetaminofén , Antioxidantes , Ratones , Animales , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteolisis , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología
5.
Lab Anim Res ; 39(1): 8, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37161442

RESUMEN

BACKGROUND: The Omicron variant has become the most prevalent SARS-CoV-2 variant. Omicron is known to induce milder lesions compared to the original Wuhan strain. Fatal infection of the Wuhan strain into the brain has been well documented in COVID-19 mouse models and human COVID-19 cases, but apparent infections into the brain by Omicron have not been reported in human adult cases or animal models. In this study, we investigated whether Omicron could spread to the brain using K18-hACE2 mice susceptible to SARS-CoV-2 infection. RESULTS: K18-hACE2 mice were intranasally infected with 1 × 105 PFU of the original Wuhan strain and the Omicron variant of SARS-CoV-2. A follow-up was conducted 7 days post infection. All Wuhan-infected mice showed > 20% body weight loss, defined as the lethal condition, whereas two out of five Omicron-infected mice (40%) lost > 20% body weight. Histopathological analysis based on H&E staining revealed inflammatory responses in the brains of these two Omicron-infected mice. Immunostaining analysis of viral nucleocapsid protein revealed severe infection of neuron cells in the brains of these two Omicron-infected mice. Lymphoid depletion and apoptosis were observed in the spleen of Omicron-infected mice with brain infection. CONCLUSION: Lethal conditions, such as severe body weight loss and encephalopathy, can occur in Omicron-infected K18-hACE2 mice. Our study reports, for the first time, that Omicron can induce brain infection with lymphoid depletion in the mouse COVID-19 model.

6.
Sci Rep ; 13(1): 3556, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36864088

RESUMEN

Bioluminescence imaging is useful for non-invasively monitoring inflammatory reactions associated with disease progression, and since NF-κB is a pivotal transcription factor that alters expressions of inflammatory genes, we generated novel NF-κB luciferase reporter (NF-κB-Luc) mice to understand the dynamics of inflammatory responses in whole body, and also in various type of cells by crossing NF-κB-Luc mice with cell-type specific Cre expressing mice (NF-κB-Luc:[Cre]). Bioluminescence intensity was significantly increased in NF-κB-Luc (NKL) mice exposed to inflammatory stimuli (PMA or LPS). Crossing NF-κB-Luc mice with Alb-cre mice or Lyz-cre mice generated NF-κB-Luc:Alb (NKLA) and NF-κB-Luc:Lyz2 (NKLL) mice, respectively. NKLA and NKLL mice showed enhanced bioluminescence in liver and macrophages, respectively. To confirm that our reporter mice could be utilized for the non-invasive monitoring of inflammation in preclinical models, we conducted a DSS-induced colitis model and a CDAHFD-induced NASH model in our reporter mice. In both models, our reporter mice reflected the development of these diseases over time. In conclusion, we believe that our novel reporter mouse can be utilized as a non-invasive monitoring platform for inflammatory diseases.


Asunto(s)
Colitis , FN-kappa B , Animales , Ratones , Progresión de la Enfermedad , Inflamación , Hígado
7.
Microbiome ; 10(1): 238, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36567320

RESUMEN

BACKGROUND: Aging is a natural process that an organism gradually loses its physical fitness and functionality. Great efforts have been made to understand and intervene in this deteriorating process. The gut microbiota affects host physiology, and dysbiosis of the microbial community often underlies the pathogenesis of host disorders. The commensal microbiota also changes with aging; however, the interplay between the microbiota and host aging remains largely unexplored. Here, we systematically examined the ameliorating effects of the gut microbiota derived from the young on the physiology and phenotypes of the aged. RESULTS: As the fecal microbiota was transplanted from young mice at 5 weeks after birth into 12-month-old ones, the thickness of the muscle fiber and grip strength were increased, and the water retention ability of the skin was enhanced with thickened stratum corneum. Muscle thickness was also marginally increased in 25-month-old mice after transferring the gut microbiota from the young. Bacteria enriched in 12-month-old mice that received the young-derived microbiota significantly correlated with the improved host fitness and altered gene expression. In the dermis of these mice, transcription of Dbn1 was most upregulated and DBN1-expressing cells increased twice. Dbn1-heterozygous mice exhibited impaired skin barrier function and hydration. CONCLUSIONS: We revealed that the young-derived gut microbiota rejuvenates the physical fitness of the aged by altering the microbial composition of the gut and gene expression in muscle and skin. Dbn1, for the first time, was found to be induced by the young microbiota and to modulate skin hydration. Our results provide solid evidence that the gut microbiota from the young improves the vitality of the aged. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Ratones , Animales , Microbioma Gastrointestinal/fisiología , Envejecimiento/fisiología , Trasplante de Microbiota Fecal , Aptitud Física , Ratones Endogámicos C57BL
8.
J Cell Mol Med ; 26(20): 5122-5134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071453

RESUMEN

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a membrane protein that mediates cell adhesion. The role of Ninj1 during inflammatory response has been widely investigated in macrophages and endothelial cells. Ninj1 is expressed in various tissues, and the liver also expresses high levels of Ninj1. Although the hepatic upregulation of Ninj1 has been reported in human hepatocellular carcinoma and septic mice, little is known of its function during the pathogenesis of liver diseases. In the present study, the role of Ninj1 in liver inflammation was explored using lipopolysaccharide (LPS)/D-galactosamine (D-gal)-induced acute liver failure (ALF) model. When treated with LPS/D-gal, conventional Ninj1 knock-out (KO) mice exhibited a mild inflammatory phenotype as compared with wild-type (WT) mice. Unexpectedly, myeloid-specific Ninj1 KO mice showed no attenuation of LPS/D-gal-induced liver injury. Whereas, Ninj1 KO primary hepatocytes were relatively insensitive to TNF-α-induced caspase activation as compared with WT primary hepatocytes. Also, Ninj1 knock-down in L929 and AML12 cells and Ninj1 KO in HepG2 cells ameliorated TNF-α-mediated apoptosis. Consistent with in vitro results, hepatocyte-specific ablation of Ninj1 in mice alleviated LPS/D-gal-induced ALF. Summarizing, our in vivo and in vitro studies show that lack of Ninj1 in hepatocytes diminishes LPS/D-gal-induced ALF by alleviating TNF-α/TNFR1-induced cell death.


Asunto(s)
Moléculas de Adhesión Celular Neuronal , Galactosamina , Fallo Hepático Agudo , Factores de Crecimiento Nervioso , Animales , Apoptosis , Caspasas/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Endoteliales/metabolismo , Hepatocitos/metabolismo , Humanos , Lipopolisacáridos , Hígado/metabolismo , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/genética , Fallo Hepático Agudo/metabolismo , Ratones , Ratones Noqueados , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
BMB Rep ; 55(7): 360, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35892132

RESUMEN

[Erratum to: BMB Reports 2022; 55(4): 187-191, PMID: 35000670, PMCID: PMC9058471] The BMB Reports would like to correct in BMB Rep. 55(4):187-191, titled "Exercise-induced beige adipogenesis of iWAT in Cidea reporter mice". This research was supported by the Research Institute for Veterinary Science, Seoul National University. Since grant name and number are incorrect, this information has now been corrected as follows: This research was supported by Korea Mouse Phenotyping Project (2013M3A9D5072550) of the National Research Foundation (NRF) funded by the Ministry of Science and ICT and partially supported by the Brain Korea 21 Plus Program and the Research Institute for Veterinary Science of Seoul National University. The authors apologize for any inconvenience or confusion that may be caused by this error. The ACKNOWLEDGEMENTS of Original PDF version have been corrected.

10.
Lab Anim Res ; 38(1): 24, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35897051

RESUMEN

Rabbits are being increasingly used as companion animals, and in research; thus, the need for proper veterinary care for rabbits has increased. Surgical access is more challenging in rabbits under inhalation anesthesia compared to other animals, such as dogs and cats. Rabbits have a very narrow and deep oral cavity, large incisors, and a large tongue. Moreover, their temporomandibular joint has limited mobility, making it more difficult to approach the larynx. Various methods have been proposed to overcome this difficulty. The video laryngoscope was introduced in 1999 and is useful when airway intubation is unsuccessful using a conventional laryngoscope. We postulated that a video laryngoscope with a modified size 1 Macintosh blade (McGrath MAC Video Laryngoscope, Medtronic, USA) would facilitate the intubation of New Zealand White rabbits. Sixteen specific-pathogen-free male New Zealand White rabbits weighing 3.45-4.70 kg were studied. All rabbits were intubated using the video laryngoscope. Typically, a 3.0 mm endotracheal tube was used for rabbits weighing < 4 kg, while a 3.5 mm tube was used in those weighing > 4 kg. During surgery, anesthesia was well maintained, and there were no major abnormalities in the animals' conditions. No rabbit developed breathing difficulties or anorexia after recovering from anesthesia. We established an intubation method using a video laryngoscope with a modified blade and stylet in the supine (ventrodorsal) position and successfully applied it in 16 rabbits. It is useful for training novices and for treating rabbits in veterinary hospitals with few staff members and animal research facilities where there are insufficient human resources.

11.
Nutrients ; 14(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807849

RESUMEN

Evidence suggests that diets with high pro-inflammatory potential may play a substantial role in the origin of gastric inflammation. This study aimed to examine the association between the energy-adjusted dietary inflammatory index (E-DIITM) and gastric diseases at baseline and after a mean follow-up of 7.4 years in a Korean population. A total of 144,196 participants from the Korean Genome and Epidemiology Study_Health Examination (KoGES_HEXA) cohort were included. E-DII scores were computed using a validated semi-quantitative food frequency questionnaire. Multivariate logistic regression and Cox proportional hazards regression were used to assess the association between the E-DII and gastric disease risk. In the prospective analysis, the risk of developing gastric disease was significantly increased among individuals in the highest quartile of E-DII compared to those in the lowest quartile (HRquartile4vs1 = 1.22; 95% CI = 1.08-1.38). Prospective analysis also showed an increased risk in the incidence of gastritis (HRquartile4vs1 = 1.19; 95% CI = 1.04-1.37), gastric ulcers (HRquartile4vs1 = 1.47; 95% CI = 1.16-1.85), and gastric and duodenal ulcers (HRquartile4vs1 = 1.46; 95% CI = 1.17-1.81) in the highest E-DII quartile compared to the lowest quartile. In the cross-sectional analysis, the E-DII score was not associated with the risk of gastric disease. Our results suggest that a pro-inflammatory diet, indicated by high E-DII scores, is prospectively associated with an increased risk of gastric diseases. These results highlight the significance of an anti-inflammatory diet in lowering the risk of gastric disease risk in the general population.


Asunto(s)
Inflamación , Gastropatías , Estudios de Cohortes , Estudios Transversales , Dieta/efectos adversos , Humanos , Inflamación/diagnóstico , Inflamación/epidemiología , República de Corea/epidemiología , Factores de Riesgo
12.
J Ethnopharmacol ; 294: 115370, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568114

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pharbitis nil (L.) Choisy is a medicinal herb, and herbal remedies based on its seeds have been used to treat of obesity and liver diseases, including fatty liver and liver cirrhosis in East Asia. AIM OF THE STUDY: Liver fibrosis is a major cause of morbidity and mortality in patients with chronic liver inflammation such as that caused by non-alcoholic steatohepatitis. However, no effective pharmaceutical treatment for liver fibrosis has been approved. In this study, we aimed to investigate that ethanol extract of pharbitis nil (PNE) alleviates the liver fibrosis. MATERIALS AND METHODS: We studied the effects of PNE on two preclinical models. Six-week-old male C57BL/6 mice were intraperitoneally injected with CCl4 twice weekly for 6 weeks and then treated with 5 or 10 mg/kg PNE daily from week 3 for weeks. Secondly, mice were fed HFD for 41 weeks and at 35 weeks treated with 5 mg/kg PNE daily for the remaining 6 weeks. In addition, we examined the antifibrotic effects of PNE in primary mouse hepatic stellate cells and LX-2 cells. RESULTS: PNE treatment ameliorated hepatocyte necrosis, inflammation, and liver fibrosis in CCl4-treated mice and inhibited the progression of liver fibrosis in mice with HFD-induced fibrosis. PNE reduced the expressions of fibrosis markers and SMAD2/3 activations in mouse livers and in TGFß1-treated primary mouse hepatic stellate and LX-2 cells CONCLUSIONS: This study demonstrates that PNE attenuates liver fibrosis by downregulating TGFß1-induced SMAD2/3 activation.


Asunto(s)
Ipomoea nil , Enfermedad del Hígado Graso no Alcohólico , Animales , Etanol/farmacología , Fibrosis , Células Estrelladas Hepáticas , Humanos , Inflamación/patología , Ipomoea nil/metabolismo , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
Nanomaterials (Basel) ; 12(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35458050

RESUMEN

This work proposes an InGaN/GaN multiple-quantum-well flip-chip blue ultrathin side-emitting (USE) light-emitting diode (LED) and describes the sidewall light emission characteristics for the application of backlight units in display technology. The USE-LEDs are fabricated with top (ITO/distributed Bragg reflector) and bottom (Ag) mirrors that cause light emission from the four sidewalls in a lateral direction. The effect of light output power (LOP) on lateral direction is consistently investigated for improving the optoelectronic performances of USE-LEDs. Initially, the reference USE-LED suffers from very low LOP because of poor light extraction efficiency (LEE). Therefore, the LEE is improved by fabricating ZnO nanorods at each sidewall through hydrothermal method. The effects of ZnO nanorod lengths and diameters on LOP are systematically investigated for optimizing the dimensions of ZnO nanorods. The optimized ZnO nanorods improve the LEE of USE-LED, which thus results in increasing the LOP > 80% compared to the reference LED. In addition, the light-tools simulator is also used for elucidating the increase in LEE of ZnO nanorods USE-LED.

14.
Adv Sci (Weinh) ; 9(13): e2104569, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35253401

RESUMEN

To expand the unchartered materials space of lead-free ferroelectrics for smart digital technologies, tuning their compositional complexity via multicomponent alloying allows access to enhanced polar properties. The role of isovalent A-site in binary potassium niobate alloys, (K,A)NbO3 using first-principles calculations is investigated. Specifically, various alloy compositions of (K,A)NbO3 are considered and their mixing thermodynamics and associated polar properties are examined. To establish structure-property design rules for high-performance ferroelectrics, the sure independence screening sparsifying operator (SISSO) method is employed to extract key features to explain the A-site driven polarization in (K,A)NbO3 . Using a new metric of agreement via feature-assisted regression and classification, the SISSO model is further extended to predict A-site driven polarization in multicomponent systems as a function of alloy composition, reducing the prediction errors to less than 1%. With the machine learning model outlined in this work, a polarity-composition map is established to aid the development of new multicomponent lead-free polar oxides which can offer up to 25% boosting in A-site driven polarization and achieving more than 150% of the total polarization in pristine KNbO3 . This study offers a design-based rational route to develop lead-free multicomponent ferroelectric oxides for niche information technologies.

15.
BMB Rep ; 55(4): 187-191, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35000670

RESUMEN

Obesity is caused by an imbalance between energy intake and energy expenditure. Exercise is attracting attention as one of the ways to treat obesity. Exercise induces 'beige adipogenesis' in white adipose tissue, increasing total energy expenditure via energy dissipation in the form of heat. Also, beige adipogenesis can be induced by treatment with a beta-adrenergic receptor agonist. We developed a Cidea-dual reporter mouse (Cidea-P2ALuc2-T2A-tdTomato, Luciferase/tdTomato) model to trace and measure beige adipogenesis in vivo. As a result, both exercise and injection of beta-adrenergic receptor agonist induced beige adipogenesis and was detected through fluorescence and luminescence. We confirmed that exercise and beta-adrenergic receptor agonist induce beige adipogenesis in Cidea-dual reporter mouse, which will be widely used for detecting beige adipogenesis in vivo. [BMB Reports 2022; 55(4): 187-191].


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco , Animales , Proteínas Reguladoras de la Apoptosis , Ratones , Obesidad , Transducción de Señal
16.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204534

RESUMEN

Leaky gut is a condition of increased paracellular permeability of the intestine due to compromised tight junction barriers. In recent years, this affliction has drawn the attention of scientists from different fields, as a myriad of studies prosecuted it to be the silent culprit of various immune diseases. Due to various controversies surrounding its culpability in the clinic, approaches to leaky gut are restricted in maintaining a healthy lifestyle, avoiding irritating factors, and practicing alternative medicine, including the consumption of supplements. In the current study, we investigate the tight junction-modulating effects of processed Aloe vera gel (PAG), comprising 5-400-kD polysaccharides as the main components. Our results show that oral treatment of 143 mg/kg PAG daily for 10 days improves the age-related leaky gut condition in old mice, by reducing their individual urinal lactulose/mannitol (L/M) ratio. In concordance with in vivo experiments, PAG treatment at dose 400 µg/mL accelerated the polarization process of Caco-2 monolayers. The underlying mechanism was attributed to enhancement in the expression of intestinal tight junction-associated scaffold protein zonula occludens (ZO)-1 at the translation level. This was induced by activation of the MAPK/ERK signaling pathway, which inhibits the translation repressor 4E-BP1. In conclusion, we propose that consuming PAG as a complementary food has the potential to benefit high-risk patients.


Asunto(s)
Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Preparaciones de Plantas/farmacología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Animales , Biomarcadores , Línea Celular , Permeabilidad de la Membrana Celular , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Masculino , Ratones , Modelos Biológicos , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
17.
Lab Anim Res ; 37(1): 20, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330339

RESUMEN

BACKGROUND: Particulate matter (PM) is one of the principal causes of human respiratory disabilities resulting from air pollution. Animal models have been applied to discover preventive and therapeutic drugs for lung diseases caused by PM. However, the induced severity of lung injury in animal models using PM varies from study to study due to disparities in the preparation of PM, and the route and number of PM administrations. In this study, we established an in vivo model to evaluate PM-induced lung injury in mice. RESULTS: PM dispersion was prepared using SRM2975. Reactive oxygen species were increased in MLE 12 cells exposed to this PM dispersion. In vivo studies were conducted in the PM single challenge model, PM multiple challenge model, and PM challenge with ovalbumin-induced asthma using the PM dispersion. No histopathological changes were observed in lung tissues after a single injection of PM, whereas mild to moderate lung inflammation was obtained in the lungs of mice exposed to PM three times. However, fibrotic changes were barely seen, even though transmission electron microscopy (TEM) studies revealed the presence of PM particles in the alveolar macrophages and alveolar capillaries. In the OVA-PM model, peribronchial inflammation and mucous hypersecretion were more severe in the OVA+PM group than the OVA group. Serum IgE levels tended to increase in OVA+PM group than in OVA group. CONCLUSIONS: In this study, we established a PM-induced lung injury model to examine the lung damage induced by PM. Based on our results, repeated exposures of PM are necessary to induce lung inflammation by PM alone. PM challenge, in the presence of underlying diseases such as asthma, can also be an appropriate model for studying the health effect of PM.

18.
Adv Sci (Weinh) ; 8(10): 2001544, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34026425

RESUMEN

Organic neuromorphic computing/sensing platforms are a promising concept for local monitoring and processing of biological signals in real time. Neuromorphic devices and sensors with low conductance for low power consumption and high conductance for low-impedance sensing are desired. However, it has been a struggle to find materials and fabrication methods that satisfy both of these properties simultaneously in a single substrate. Here, nanofiber channels with a self-formed ion-blocking layer are fabricated to create organic electrochemical transistors (OECTs) that can be tailored to achieve low-power neuromorphic computing and fast-response sensing by transferring different amounts of electrospun nanofibers to each device. With their nanofiber architecture, the OECTs exhibit a low switching energy of 113 fJ and operate within a wide bandwidth (cut-off frequency of 13.5 kHz), opening a new paradigm for energy-efficient neuromorphic computing/sensing platforms in a biological environment without the leakage of personal information.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Electroquímicas/métodos , Nanofibras/química , Polímeros/química , Sinapsis/fisiología , Transistores Electrónicos/normas , Redes Neurales de la Computación
19.
Free Radic Biol Med ; 162: 77-87, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33279616

RESUMEN

Melanoma, the most severe form of skin cancer, has poor prognosis and is resistant to chemotherapy. Targeting cancer metabolism is a promising approach in cancer therapeutics. Dihydrolipoyl dehydrogenase (DLD) is a mitochondrial enzyme with diaphorase activity. Here we report a pivotal role of DLD in melanoma cell progression and proliferation. Suppression DLD expression by low intensity UVA (125 mJ/cm2) increased intracellular ROS production and decreased mitochondrial membrane potential thereby inducing autophagy cell death which were confirmed by increased LC3BII and decreased p62 expression in melanoma cells. Knockdown of DLD in melanoma cells also showed similar results. More so, suppression of DLD significantly inhibits in vivo melanoma growth and tumor proliferation. In addition, suppression of DLD increased the NAD+/NADH ratio in melanoma cells and also inhibits TCA cycle related metabolites. DLD downregulation markedly increased α-ketoglutarate and decreased succinic acid suggesting that DLD suppression may have decreased TCA cycle downstream metabolites, resulting in the alteration of mitochondrial energy metabolism Thus the downregulation of DLD induced autophagic cell death in melanoma cells and inhibits in vivo tumor growth and proliferation by increasing ROS production and altering energy metabolism. Our findings suggest that DLD plays a pivotal role in melanoma progression and proliferation.


Asunto(s)
Dihidrolipoamida Deshidrogenasa , Melanoma , Apoptosis , Línea Celular Tumoral , Dihidrolipoamida Deshidrogenasa/genética , Regulación hacia Abajo , Humanos , Melanoma/genética , Oxidación-Reducción , Estrés Oxidativo
20.
Nutrients ; 12(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238403

RESUMEN

Acetaminophen (APAP) is one of the most frequently prescribed analgesic and anti-pyretic drugs. However, APAP-induced hepatotoxicity is a major cause of acute liver failure globally. While the therapeutic dose is safe, an overdose of APAP produces an excess of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), subsequently resulting in hepatotoxicity. Allyl isothiocyanate (AITC), a bioactive molecule in cruciferous plants, is reported to exert various biological effects, including anti-inflammatory, anti-cancer, and anti-microbial effects. Notably, AITC is known for activating nuclear factor erythroid 2-related factor 2 (NRF2), but there is limited evidence supporting the beneficial effects on hepatocytes and liver, where AITC is mainly metabolized. We applied a mouse model in the current study to investigate whether AITC protects the liver against APAP-induced injury, wherein we observed the protective effects of AITC. Furthermore, NRF2 nuclear translocation and the increase of target genes by AITC treatment were confirmed by in vitro experiments. APAP-induced cell damage was attenuated by AITC via an NRF2-dependent manner, and rapid NRF2 activation by AITC was attributed to the elevation of NRF2 stability by decreasing its spontaneous degradation. Moreover, liver tissues from our mouse experiment revealed that AITC increases the expression of heme oxygenase-1 (HO-1), an NRF2 target gene, confirming the potential of AITC as a hepatoprotective agent that induces NRF2 activation. Taken together, our results indicate the potential of AITC as a natural-product-derived NRF2 activator targeting the liver.


Asunto(s)
Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hepatocitos/efectos de los fármacos , Isotiocianatos/farmacología , Animales , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...