Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(3): 4527-4537, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36629148

RESUMEN

What are the most important and decisive parameters that determine the structure and the property of polymer nanocomposites (PNCs)? Previous studies answered that controlling the nanoparticle interface is critical, which can be achieved with a choice of a compatible nanoparticle, a proper surface modification, and a change in the polymer chain length. In addition to these parameters, the processing condition of PNCs has recently emerged as an influential parameter for controlling PNC properties, suggesting the existence of the nonequilibrium effect of PNCs. In this regard, we chose the solvent as a main change in the processing condition and investigated the initial solvent-driven nonequilibrium effect of PNCs with varied nanoparticle (NP) sizes. We found that the type of the initial solvent is indeed crucial in determining the ultimate properties of the PNCs, and this becomes more influential as the size of NPs decreases. The decreasing size of NPs causes a conformational change in the adsorbed polymers from tightly packed layers to loosely dangling chains. This results in much greater differences in NP microstructures and rheological properties of PNCs, indicating a stronger nonequilibrium effect with smaller NPs.

2.
Soft Matter ; 18(4): 841-848, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-34982088

RESUMEN

Since the degree of particle dispersion can determine the physical properties of polymer nanocomposites (PNCs), plenty of studies have focused on the intrinsic parameters of PNCs such as the concentration/size/chemistry of nanoparticles/polymers relevant to the particle microstructure. While the consideration of these parameters is based on PNCs being in their equilibrium states, PNCs can be kinetically trapped in a nonequilibrium state during the multiple steps of processing. In other words, processing conditions can contribute more significantly to particle dispersion and the properties of PNCs beyond the effects of the intrinsic parameters. Hence, a systematic understanding of the nonequilibrium behaviour of PNCs is required to achieve the desired properties. In this work, we prepared concentrated suspensions with two different preparation pathways. The two different pathways yield different polymer conformations particularly near the particle surface despite the same composition of particles/polymers as the systems are trapped in a nonequilibrium state. Accordingly, the particle microstructures are also greatly changed by the preparation pathway. We found that even in the presence of solvents, these preparation pathway-dependent nonequilibrium effects on particle microstructures persist after several months of aging and ultimately determine the long-term stability of the particle dispersion.

3.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502999

RESUMEN

Polymers adsorbed on nanoparticles (NPs) are important elements that determine the dispersion of NPs in polymer nanocomposite (PNC) films. While previous studies have shown that increasing the number of adsorbed polymers on NPs can improve their dispersion during the drying process, the exact mechanism remained unclear. In this study, we investigated the role of adsorbed polymers in determining the microstructure and dispersion of NPs during the drying process. Investigation of the structural development of NPs using the synchrotron vertical-small-angle X-ray scattering technique revealed that increasing polymer adsorption suppresses bonding between the NPs at later stages of drying, when they approach each other and come in contact. On the particle length scale, NPs with large amounts of adsorbed polymers form loose clusters, whereas those with smaller amounts of adsorbed polymers form dense clusters. On the cluster length scale, loose clusters of NPs with large amounts of adsorbed polymers build densely packed aggregates, while dense clusters of NPs with small amounts of adsorbed polymers become organized into loose aggregates. The potential for the quantitative control of NP dispersion in PNC films via modification of polymer adsorption was established in this study.

4.
Phys Rev Lett ; 123(16): 167801, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702348

RESUMEN

Unusual structures and dynamic properties found in polymer nanocomposites (PNCs) are often attributed to immobilized (adsorbed) polymers at nanoparticle-polymer interfaces, which are responsible for reducing the intrinsic incompatibility between nanoparticles and polymers in PNCs. Although tremendous effort has been made to characterize the presence of immobilized polymers, a systematic understanding of the structure and dynamics under different processing conditions is still lacking. Here, we report that the initial dispersing solvent, which is not present after producing PNCs, drives these nonequilibrium effects on polymer chain dynamics at interfaces. Employing extensive small-angle scattering, proton NMR spectroscopy, and rheometry experiments, we found that the thickness of the immobilized layer can be dependent on the initial solvent, changing the structure and the properties of the PNC significantly. In addition, we show that the outcome of the initial solvent effect becomes more effective at particle volume fractions where the immobile layers begin to interact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...