Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 117(1): 64-73, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36933845

RESUMEN

PURPOSE: The aim of this study was to evaluate a formulation of pegylated liposomal mitomycin C lipidic prodrug (PL-MLP) in patients concomitantly undergoing external beam radiation therapy (RT). METHODS AND MATERIALS: Patients with metastatic disease or inoperable primary solid tumors requiring RT for disease control or symptom relief were treated with 2 courses of PL-MLP (1.25, 1.5, or 1.8 mg/kg) at 21-day intervals, along with 10 fractions of conventional RT or 5 stereotactic body RT fractions initiated 1 to 3 days after the first PL-MLP dose and completed within 2 weeks. Treatment safety was monitored for 6 weeks, and disease status was re-evaluated at 6-week intervals thereafter. MLP levels were analyzed 1 hour and 24 hours after each PL-MLP infusion. RESULTS: Overall, 19 patients with metastatic (18) or inoperable (1) disease received combination treatment, with 18 completing the full protocol. Most patients (16) had diagnoses of advanced gastrointestinal tract cancer. One grade 4 neutropenia event possibly related to study treatment was reported; other adverse events were mild or moderate. Of the 18 evaluable patients, 16 were free of RT target lesion progression at first re-evaluation. Median survival of the entire patient population was 63.3 weeks. Serum MLP level correlated with dose increases and similar long circulating profiles were observed before and after RT. CONCLUSIONS: PL-MLP up to 1.8 mg/kg in combination with RT treatment is safe, with a high rate of tumor control. Drug clearance is not affected by radiation. PL-MLP is potentially an attractive option for chemoradiation therapy that warrants further evaluation in randomized studies in the palliative and curative settings.


Asunto(s)
Neoplasias , Neutropenia , Profármacos , Humanos , Mitomicina/efectos adversos , Profármacos/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Lípidos , Polietilenglicoles/efectos adversos
2.
Cancer Chemother Pharmacol ; 90(2): 109-114, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35802145

RESUMEN

PURPOSE: To examine the ex- vivo ability of explanted human tumors and normal tissue to activate liposomal mitomycin C lipidic prodrug (MLP) by releasing the active free drug form, mitomycin C (MMC). METHODS: We tested conversion of MLP to MMC in an ex vivo assay using explanted tissues obtained during routine surgery to remove primary tumors or metastases. Tumor and adjacent normal tissue were obtained from freshly explanted tumors and were immediately deep frozen at - 70 °C. On test day, the fragments were thawed, homogenized and incubated in the presence of a fixed amount of liposomal MLP at 37 °C for 1 h. We measured MLP and its rate of conversion to MMC by HPLC. Controls included plasma, malignant effusions, red blood cells, tumor cell lines, mouse liver, and buffer with dithiothreitol, a potent reducing agent. RESULTS: Most patients tested (16/20) were diagnosed with colo-rectal carcinoma. The average fraction of MLP cleaved per 100-mg tumor tissue (21.1%, SEM = 1.8) was greater than per 100-mg normal tissue (16.6%, SEM = 1.3). When the tumor and normal tissue samples were paired by patient, the difference was statistically significant (p = 0.022, paired t test). Biological fluids did not activate liposomal MLP, while normal liver tissue strongly does. Interestingly, the omental fatty tissue also greatly activated MLP. CONCLUSIONS: Tumor tissue homogenates activate MLP with greater efficiency than the surrounding normal tissues, but far less than liver and adipose tissue. These observations demonstrate the bioavailability of liposomal MLP in human tumors, and its pharmacologic potential in cancer therapy.


Asunto(s)
Mitomicina , Profármacos , Animales , Línea Celular Tumoral , Humanos , Lípidos , Liposomas , Ratones , Mitomicina/farmacología , Profármacos/farmacología
3.
Cancer Drug Resist ; 4(2): 463-484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35582027

RESUMEN

Aim: Co-encapsulation of anti-cancer agents in pegylated liposomes may provide an effective tool to maximize efficacy of combined drug therapy by taking advantage of the long circulation time, passive targeting, and reduced toxicity of liposome formulations. Methods: We have developed several liposome formulations of co-encapsulated drugs using various permutations of three active agents: doxorubicin (Dox), mitomycin-C lipidic prodrug (MLP), and alendronate (Ald). Dox and MLP are available in single drug liposomal formulations: pegylated liposomal Dox (PLD, Doxil®), clinically approved, and pegylated liposomal MLP (PL-MLP, Promitil®), in phase 1-2 clinical testing. We have previously shown that co-encapsulation of Dox and Ald in pegylated liposomes (PLAD) results in a formulation with valuable immuno-pharmacologic properties and superior antitumor properties over PLD in immunocompetent animal models. Building on the PLAD and PL-MLP platforms, we developed a new pegylated liposomal formulation of co-entrapped Dox and MLP (PLAD-MLP), with the former localized in the liposome water phase via remote loading with an ammonium alendronate and the latter passively loaded into the liposome lipid bilayer. An alternative formulation of co-entrapped MLP and Dox in which ammonium Ald was replaced with ammonium sulfate (PLD-MLP) was also tested for comparative purposes. Results: PLAD-MLP displays high loading efficiency of Dox and MLP nearing 100%, and a mean vesicle diameter of 110 nm. Cryo-transmission electron microscopy (cryo-TEM) of PLAD-MLP reveals round vesicles with an intra-vesicle Dox-alendronate precipitate. PLAD-MLP was tested in an in vitro MLP activation assay with the reducing agent dithiothreitol and found to be significantly less susceptible to thiolytic activation than PL-MLP. Alongside thiolytic activation of MLP, a significant fraction of encapsulated Dox was released from liposomes. PLAD-MLP is stable upon in vitro incubation in human plasma with nearly 100% drug retention. In mouse pharmacokinetic studies, PLAD-MLP extended MLP half-life in circulation when compared to that of MLP delivered as PL-MLP. In addition, the MLP levels in tissues were greater than those obtained with PL-MLP, indicating that PLAD-MLP slows down the cleavage of the prodrug MLP to MMC, thus resulting in a more sustained and prolonged exposure. The circulation half-life of Dox in PLAD-MLP was similar to the PLD Dox half-life. The pattern of tissue distribution was similar for the co-encapsulated drugs, although Dox levels were generally higher than those of MLP, as expected from cleavage of MLP to its active metabolite MMC. In mouse tumor models, the therapeutic activity of PLAD-MLP was superior to PL-MLP and PLD with a convenient safety dose window. The Ald-free formulation, PLD-MLP, displayed similar pharmacokinetic properties to PLAD-MLP, but its therapeutic activity was lower. Conclusion: PLAD-MLP is a novel multi-drug liposome formulation with attractive pharmacological properties and powerful antitumor activity and is a promising therapeutic tool for combination cancer chemotherapy.

4.
Adv Drug Deliv Rev ; 154-155: 13-26, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32777239

RESUMEN

Several liposome products have been approved for the treatment of cancer. In all of them, the active agents are encapsulated in the liposome water phase passively or by transmembrane ion gradients. An alternative approach in liposomal drug delivery consists of chemically modifying drugs to form lipophilic prodrugs with strong association to the liposomal bilayer. Based on this approach, we synthesized a mitomycin c-derived lipidic prodrug (MLP) which is entrapped in the bilayer of PEGylated liposomes (PL-MLP, Promitil®), and activated by thiolytic cleavage. PL-MLP is stable in plasma with thiolytic activation of MLP occurring exclusively in tissues and is more effective and less toxic than conventional chemotherapy in various tumor models. PL-MLP has completed phase I clinical development where it has shown a favorable safety profile and a 3-fold reduction in toxicity as compared to free mitomycin c. Clinical and pharmacokinetic studies in patients with advanced colo-rectal carcinoma have indicated a significant rate of disease stabilization (39%) in this chemo-refractory population and significant prolongation of median survival in patients attaining stable disease (13.9 months) versus progressive disease patients (6.35 months). The pharmacokinetics of MLP was typically stealth with long T½ (~1 day), slow clearance and small volume of distribution. Interestingly, a longer T½, and slower clearance were both correlated with disease stabilization and longer survival. This association of pharmacokinetic parameters with patient outcome suggests that arrest of tumor growth is related to the enhanced tumor localization of long-circulating liposomes and highlights the importance of personalized pharmacokinetic evaluation in the clinical use of nanomedicines. Another important area where PL-MLP may have an added value is in chemoradiotherapy, where it has shown a strong radiosensitizing effect in animal models based on a unique mechanism of enhanced prodrug activation and encouraging results in early human testing.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Mitomicina/administración & dosificación , Neoplasias/tratamiento farmacológico , Polietilenglicoles/administración & dosificación , Profármacos/administración & dosificación , Animales , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Humanos , Lípidos/administración & dosificación , Lípidos/efectos adversos , Lípidos/química , Lípidos/farmacocinética , Liposomas , Mitomicina/efectos adversos , Mitomicina/química , Mitomicina/farmacocinética , Neoplasias/metabolismo , Polietilenglicoles/efectos adversos , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Profármacos/efectos adversos , Profármacos/química , Profármacos/farmacocinética , Distribución Tisular , Resultado del Tratamiento
5.
Invest New Drugs ; 38(5): 1411-1420, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-31955309

RESUMEN

Background Pegylated liposomal (PL) mitomycin-c lipidic prodrug MLP) may be a useful agent in patients with metastatic colo-rectal carcinoma (CRC). We report here on the pharmacokinetics and clinical observations in a phase 1A/B study with PL-MLP. Methods Plasma levels of MLP were examined in 53 CRC patients, who received PL-MLP either as single agent or in combination with capecitabine and/or bevacizumab. MLP was determined by an HPLC-UV assay, and its pharmacokinetics was analyzed by noncompartmental methods. The correlation between clinical and pharmacokinetic parameters was statistically analyzed. Results PL-MLP was well tolerated with a good safety profile as previously reported. Stable Disease was reported in 15/36 (42%) of efficacy-evaluable patients. Median survival of stable disease patients (14.4 months) was significantly longer than of progressive disease patients (6.5 months) and non-evaluable patients (2.3 months). MLP pharmacokinetics was stealth-like with long T½ (~1 day), slow clearance, and small volume of distribution (Vd). The addition of capecitabine and/or bevacizumab did not have any apparent effect on the pharmacokinetics of MLP and clinical outcome. High baseline neutrophil count and CEA level were correlated with faster clearance, and larger Vd. Stable disease patients had longer T½ and slower clearance than other patients. T½ and clearance were significantly correlated with survival. Conclusions PL-MLP treatment results in a substantial rate of disease stabilization in metastatic CRC, and prolonged survival in patients achieving stable disease. The correlation of neutrophil count and CEA level with pharmacokinetic parameters of MLP is an unexpected finding that needs further investigation. The association of long T½ of MLP with stable disease and longer survival is consistent with an improved probability of disease control resulting from enhanced tumor localization of long-circulating liposomes and underscores the relevance of personalized pharmacokinetic evaluation in the use of nanomedicines.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Mitomicina/administración & dosificación , Mitomicina/farmacocinética , Profármacos/administración & dosificación , Profármacos/farmacocinética , Adulto , Anciano , Antibióticos Antineoplásicos/sangre , Área Bajo la Curva , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Femenino , Semivida , Humanos , Lípidos/administración & dosificación , Lípidos/farmacocinética , Liposomas , Masculino , Persona de Mediana Edad , Mitomicina/sangre
6.
Front Oncol ; 8: 544, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534533

RESUMEN

Hypo-fractionated radiotherapy and stereotactic body radiotherapy are viable options for treatment of oligometastases. A prodrug of mitomycin-C is under clinical testing as a pegylated liposomal formulation (Promitil) with an improved safety profile over mitomycin-C. Promitil was offered to two patients with oligometastases from colorectal cancer as radiosensitizer. Each derived durable clinical benefit from Promitil administered immediately prior to and following irradiation. Transient toxicity to normal tissues of moderate to severe degree was observed. Promitil appears to have potential clinical value in this setting. HIGHLIGHTS - Delivery of radio-sensitizing drugs with pegylated (long-circulating) liposomes is a pharmacologically rational approach which remains largely clinically untested.- A mitomycin-c prodrug delivered by pegylated liposomes (Promitil) is activated by thiol groups, which are produced in excess by radiation-damaged cells, thus potentiating the radio-sensitizing effect of Promitil.- Two durable clinical responses in patient with colorectal oligometastases to Promitil and radiotherapy suggest that this approach may be of value in cancer chemo-radiotherapy.

7.
Nanomedicine ; 14(4): 1407-1416, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29680672

RESUMEN

Folate-targeted liposomes (FTL) were tested as drug delivery vehicles to PSMA-positive cancer cells. We used FL with co-entrapped mitomycin C lipophilic prodrug (MLP) and doxorubicin (DOX), and the LNCaP prostate cancer cell line which expresses PSMA but is negative for folate receptor. A major increase in cell drug levels was observed when LNCaP cells were incubated with FTL as compared to non-targeted liposomes (NTL). MLP was activated to mitomycin C, and intracellular and nuclear fluorescence of DOX was detected, indicating FTL processing and drug bioavailability. PMPA (2-(phosphonomethyl)-pentanedioic acid), a specific inhibitor of PSMA, blocked the uptake of FTL into LNCaP cells, but did not affect the uptake of FTL into PSMA-deficient and folate receptor-positive KB cells. The cytotoxic activity of drug-loaded FTL was found significantly enhanced when compared to NTL in LNCaP cells. FTL may provide a new tool for targeted therapy of cancers that over-express the PSMA receptor.


Asunto(s)
Antígenos de Superficie/metabolismo , Doxorrubicina/química , Ácido Fólico/química , Glutamato Carboxipeptidasa II/metabolismo , Liposomas/química , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Masculino , Mitomicina/química , Mitomicina/farmacología
8.
Mol Pharm ; 14(12): 4339-4345, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-28045540

RESUMEN

The effect of a lipidated prodrug of mitomycin C (MLP) on the membrane of a pegylated liposome formulation (PL-MLP), also known as Promitil, was characterized through high-sensitivity differential scanning calorimetry (DSC) and cryo-TEM. The thermodynamic analysis demonstrated that MLP led to the formation of heterogeneous domains in the membrane plane of PL-MLP. MLP concentrated in prodrug-rich domains, arranged in high-ordered crystal-like structures, as suggested by the sharp and high enthalpy endotherm in the first heating scanning. After thiolytic cleavage of mitomycin C from MLP by dithiothreitol (DTT) treatment, the crystal-like prodrug domain disappears and a homogeneous membrane with stronger lipid interactions and higher phase transition temperature compared with the blank (MLP-free) liposomes is observed by DSC. In parallel, the rod-like discoid liposomes and the "kissing liposomes" seen by cryo-TEM in the PL-MLP formulation disappear, and liposome mean size and polydispersity increase after DTT treatment. Both MLP and the residual postcleavage lipophilic moiety of the prodrug increased the rigidity of the liposome membrane as indicated by DSC. These results confirm that MLP is inserted in the PL-MLP liposome membrane via its lipophilic anchor, and its mitomycin C moiety located mainly at the region of the phospholipid glycerol backbone and polar headgroup. We hypothesize that π-π stacking between the planar aromatic rings of the mitomycin C moieties leads to the formation of prodrug-rich domains with highly ordered structure on the PL-MLP liposome membrane. This thermodynamically stable conformation may explain the high stability of the PL-MLP formulation. These results also provide us with an interesting example of the application of high sensitivity DSC in understanding the composition-structure-behavior dynamics of liposomal nanocarriers having a lipid-based drug as pharmaceutical ingredient.


Asunto(s)
Mitomicina/química , Profármacos/química , Rastreo Diferencial de Calorimetría , Química Farmacéutica , Estabilidad de Medicamentos , Liposomas , Microscopía Electrónica de Transmisión , Nanopartículas/química , Transición de Fase , Polietilenglicoles/química , Termodinámica
9.
Int J Radiat Oncol Biol Phys ; 96(3): 547-55, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681751

RESUMEN

PURPOSE: To examine the effect of radiation on in vitro drug activation and release of Promitil, a pegylated liposomal formulation of a mitomycin C (MMC) lipid-based prodrug; and examine the efficacy and toxicity of Promitil with concurrent radiation in colorectal cancer models. METHODS AND MATERIALS: Promitil was obtained from Lipomedix Pharmaceuticals (Jerusalem, Israel). We tested the effects of radiation on release of active MMC from Promitil in vitro. We next examined the radiosensitization effect of Promitil in vitro. We further evaluated the toxicity of a single injection of free MMC or Promitil when combined with radiation by assessing the effects on blood counts and in-field skin and hair toxicity. Finally, we compared the efficacy of MMC and Promitil in chemoradiotherapy using mouse xenograft models. RESULTS: Mitomycin C was activated and released from Promitil in a controlled-release profile, and the rate of release was significantly increased in medium from previously irradiated cells. Both Promitil and MMC potently radiosensitized HT-29 cells in vitro. Toxicity of MMC (8.4 mg/kg) was substantially greater than with equivalent doses of Promitil (30 mg/kg). Mice treated with human-equivalent doses of MMC (3.3 mg/kg) experienced comparable levels of toxicity as Promitil-treated mice at 30 mg/kg. Promitil improved the antitumor efficacy of 5-fluorouracil-based chemoradiotherapy in mouse xenograft models of colorectal cancer, while equitoxic doses of MMC did not. CONCLUSIONS: We demonstrated that Promitil is an attractive agent for chemoradiotherapy because it demonstrates a radiation-triggered release of active drug. We further demonstrated that Promitil is a well-tolerated and potent radiosensitizer at doses not achievable with free MMC. These results support clinical investigations using Promitil in chemoradiotherapy.


Asunto(s)
Quimioradioterapia/métodos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Preparaciones de Acción Retardada/administración & dosificación , Mitomicina/administración & dosificación , Profármacos/administración & dosificación , Animales , Antibióticos Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Femenino , Células HT29 , Humanos , Liposomas/efectos de la radiación , Ratones , Ratones Desnudos , Dosificación Radioterapéutica , Resultado del Tratamiento
10.
J Control Release ; 225: 87-95, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26809007

RESUMEN

Mitomycin C (MMC) is a powerful anti-bacterial, anti-fungal and anti-tumor antibiotic, often active against multidrug resistant cells. Despite a broad spectrum of antitumor activity, MMC clinical use is relatively limited due to its fast clearance and dose-limiting toxicity. To exploit the potential antitumor activity of MMC and reduce its toxicity we have previously developed a formulation of pegylated liposomes with a lipophilic prodrug of MMC (PL-MLP), activated by endogenous reducing agents which are abundant in the tumor cell environment in the form of different thiols. PL-MLP has minimal in vitro cytotoxicity unless reducing agents are added to the cell culture to activate the prodrug. In the present study, we hypothesized that targeting PL-MLP via folate receptors will facilitate intracellular activation of prodrug and enhance cytotoxic activity without added reducing agents. We grafted a lipophilic folate conjugate (folate-PEG(5000)-DSPE) to formulate folate targeted liposomes (FT-PL-MLP) and examined in vitro cell uptake and cytotoxic activity in cancer cell lines with high folate receptors (HiFR). 3H-cholesterol-hexadecyl ether (3H-Chol)-radiolabeled liposomes were prepared to study liposome-cell binding in parallel to cellular uptake of prodrug MLP. 3H-Chol and MLP cell uptake levels were 4-fold and 9-fold greater in KB HiFR cells when FT-PL-MLP is compared to non-targeted PL-MLP liposomes. The cytotoxic activity of FT-PL-MLP liposomes was significantly increased up to ~5-fold compared with PL-MLP liposomes in all tested HiFR expressing cell lines. The enhanced uptake and intracytoplasmic liposome delivery was confirmed by confocal fluorescence studies with Rhodamine-labeled liposomes. In vivo, no significant differences in pharmacokinetics and biodistribution were observed when PL-MLP was compared to FT-PL-MLP by the intravenous route. However, when liposomes were directly injected into the peritoneal cavity of mice with malignant ascites of J6456 HiFR lymphoma cells, the tumor cell levels of MLP were significantly greater with the folate-targeted liposomes. Thus, folate targeting enhances liposome uptake by tumor cells enabling intracellular activation of prodrug in the absence of exogenous reducing agents, and leading to increased cytotoxicity. These results may be particularly relevant to the application of folate-targeted PL-MLP in intracavitary or intravesical treatment of cancer.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/administración & dosificación , Mitomicina/administración & dosificación , Fosfatidiletanolaminas/administración & dosificación , Polietilenglicoles/administración & dosificación , Profármacos/administración & dosificación , Animales , Antibióticos Antineoplásicos/sangre , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Femenino , Ácido Fólico/química , Ácido Fólico/farmacocinética , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitomicina/sangre , Mitomicina/química , Mitomicina/farmacocinética , Terapia Molecular Dirigida , Neoplasias/metabolismo , Enfermedades Peritoneales/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacocinética , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Profármacos/química , Profármacos/farmacocinética
11.
Pharm Res ; 33(3): 686-700, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26572644

RESUMEN

PURPOSE: Pegylated liposomal (PL) mitomycin C lipid-based prodrug (MLP) has recently entered clinical testing. We studied here the preclinical pharmacology of PL-MLP. METHODS: The stability, pharmacokinetics, biodistribution, and other pharmacologic parameters of PL-MLP were examined. Thiolytic cleavage of MLP and release of active mitomycin C (MMC) were studied using dithiothreitol (DTT), and by incubation with tissue homogenates. RESULTS: MLP was incorporated in the bilayer at 10% molar ratio with nearly 100% entrapment efficiency, resulting in a formulation with high plasma stability. In vitro, DTT induced cleavage of MLP with predictable kinetics, generating MMC and enhancing pharmacological activity. A long circulation half-life of MLP (10-15 h) was observed in rodents and minipigs. Free MMC is either extremely low or undetectable in plasma. However, urine from PL-MLP injected rats revealed delayed but significant excretion of MMC indicating in vivo activation of MLP. Studies in mice injected with H3-cholesterol radiolabeled PL-MLP demonstrated relatively greater tissue levels of H3-cholesterol than MLP. MLP levels were highest in tumor and spleen, and very low or undetectable in liver and lung. Rapid cleavage of MLP in various tissues, particularly in liver, was shown in ex-vivo experiments of PL-MLP with tissue homogenates. PL-MLP was less toxic in vivo than equivalent doses of MMC. Therapeutic studies in C26 mouse tumor models demonstrated dose-dependent improved efficacy of PL-MLP over MMC. CONCLUSIONS: Thiolytic activation of PL-MLP occurs in tissues but not in plasma. Liposomal delivery of MLP confers a favorable pharmacological profile and greater therapeutic index than MMC.


Asunto(s)
Liposomas/farmacología , Liposomas/farmacocinética , Mitomicina/farmacología , Mitomicina/farmacocinética , Plasma/metabolismo , Profármacos/farmacología , Profármacos/farmacocinética , Animales , Química Farmacéutica/métodos , Colesterol/metabolismo , Ditiotreitol/metabolismo , Estabilidad de Medicamentos , Femenino , Semivida , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratas , Ratas Sprague-Dawley , Bazo/metabolismo , Porcinos , Distribución Tisular
12.
Cancer Med ; 4(10): 1472-83, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26172205

RESUMEN

Mitomycin C (MMC) has potent cytotoxicity but cumulative toxicity limits widespread use. In animals, pegylated liposomal mitomycin C lipid-based prodrug (PL-MLP) was well tolerated and more effective than free MMC. We evaluated PL-MLP in patients with advanced cancer. Twenty-seven patients were treated in escalating dose cohorts of 0.5-3.5 mg/kg (equivalent to 0.15-1.03 mg/kg MMC) every 4 weeks for up to 12 cycles, unless disease progression or unacceptable toxicity occurred. Pharmacokinetics were assessed during cycles 1 and 3. Per protocol maximum tolerated dose was not reached at 3.5 mg/kg. However, prolonged thrombocytopenia developed after repeated doses of 3 mg/kg or cumulative doses of 10-12 mg/kg. Dose-related grade 3 or higher adverse events included fatigue, anemia, and decreased platelets. Cmax and AUC0-∞ increased linearly over the dose range 0.5-2.0 mg/kg, and greater than linearly from 2.5 to 3.5 mg/kg; there were no significant differences in clearance of MLP between cycles 1 and 3. Median t1/2 was 23 h among dose cohorts, with no trend by dose or cycle. One patient had a partial response. Stable disease was observed in 10 patients across all dose levels. PL-MLP has a long circulation time, was well tolerated, and can be administered to heavily pretreated patients at a single dose of 3.0 mg/kg and cumulative dose of 10-12 mg/kg before development of prolonged thrombocytopenia; this is nearly threefold the equivalent dose of MMC tolerated historically. This formulation may be active in a variety of tumor types and is better tolerated than free MMC.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Mitomicina/administración & dosificación , Neoplasias/tratamiento farmacológico , Profármacos/administración & dosificación , Adulto , Anciano , Anemia/inducido químicamente , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/farmacocinética , Fatiga/inducido químicamente , Femenino , Humanos , Liposomas , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Mitomicina/efectos adversos , Mitomicina/farmacocinética , Polietilenglicoles , Profármacos/efectos adversos , Profármacos/farmacocinética , Criterios de Evaluación de Respuesta en Tumores Sólidos , Trombocitopenia/inducido químicamente
13.
Int J Mol Sci ; 14(2): 4298-316, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23429271

RESUMEN

The field of the long non-coding RNA (lncRNA) is advancing rapidly. Currently, it is one of the most popular fields in the biological and medical sciences. It is becoming increasingly obvious that the majority of the human transcriptome has little or no-protein coding capacity. Historically, H19 was the first imprinted non-coding RNA (ncRNA) transcript identified, and the H19/IGF2 locus has served as a paradigm for the study of genomic imprinting since its discovery. In recent years, we have extensively investigated the expression of the H19 gene in a number of human cancers and explored the role of H19 RNA in tumor development. Here, we discuss recently published data from our group and others that provide further support for a central role of H19 RNA in the process of tumorigenesis. Furthermore, we focus on major transcriptional modulators of the H19 gene and discuss them in the context of the tumor-promoting activity of the H19 RNA. Based on the pivotal role of the H19 gene in human cancers, we have developed a DNA-based therapeutic approach for the treatment of cancers that have upregulated levels of H19 expression. This approach uses a diphtheria toxin A (DTA) protein expressed under the regulation of the H19 promoter to treat tumors with significant expression of H19 RNA. In this review, we discuss the treatment of four cancer indications in human subjects using this approach, which is currently under development. This represents perhaps one of the very few examples of an existing DNA-based therapy centered on an lncRNA system. Apart from cancer, H19 expression has been reported also in other conditions, syndromes and diseases, where deregulated imprinting at the H19 locus was obvious in some cases and will be summarized below. Moreover, the H19 locus proved to be much more complicated than initially thought. It houses a genomic sequence that can transcribe, yielding various transcriptional outputs, both in sense and antisense directions. The major transcriptional outputs of the H19 locus are presented here.

14.
ISRN Oncol ; 2012: 351750, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22701803

RESUMEN

Pancreatic cancer is the eighth cancer leading cause of cancer-related death in the world and has a 5-year survival rate of 1-4% only. Gemcitabine is a first line agent for advanced pancreatic therapy; however, its efficacy is limited by its poor intracellular metabolism and chemoresistance. Studies have been conducted in an effort to improve gemcitabine treatment results by adding other chemotherapeutic agents, but none of them showed any significant advantage over gemcitabine monotherapy. We found that 85% of human pancreatic tumors analyzed by in situ hybridization analyses showed moderated to strong expression of the H19 gene. We designed a preclinical study combining gemcitabine treatment and a DNA-based therapy for pancreatic cancer using a non viral vector BC-819 (also known as DTA-H19), expressing the diphtheria toxin A chain under the control of the H19 gene regulatory sequences. The experiments conducted either in an orthotopic and heterotopic pancreatic carcinoma animal model showed better antitumor activity following the sequential administration of the vector BC-819 and gemcitabine as compared to the effect of each of them alone. The results presented in the current study indicate that treatment with BC-819 in combination with gemcitabine might be a viable new therapeutic option for patients with advanced pancreatic cancer.

15.
Int J Oncol ; 39(6): 1407-12, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21874233

RESUMEN

Curative surgery is possible in barely 10% of patients with colorectal liver metastases and combined treatment modalities scarcely improve survival in this group of patients. Hence, investigations of new therapeutic modalities are crucial. Overexpression of the H19 gene in liver metastases points to H19 as a target for cancer gene therapy. Here we have evaluated the possibility of regional intra-arterial treatment of liver meta-stases with the DTA-H19 plasmid. Intra-arterial treatment of a total dose of 2.5 mg (repeated injections of 500 µg DTA-H19 plasmid each dose after the first injection of 1000 µg) caused a significant delay in the tumor growth compared to control group. All of the tumors treated with the control vector increased in size, whereas 35.7% of the tumors in the groups treated with a total amount of 2.5 mg DTA-H19 plasmid shrank in size. The present study showed that the DTA-H19 plasmid administered intra-arterially significantly delayed the tumor growth and even resulted in tumor regression in high percentage of the treated animals with liver metastases of colon cancer. Since human liver metastases demonstrated overexpression of the H19 gene, regional administration of the plasmid seems to be a promising therapeutic approach.


Asunto(s)
Adenocarcinoma/secundario , Adenocarcinoma/terapia , Neoplasias del Colon/patología , Vectores Genéticos/administración & dosificación , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , ARN no Traducido/genética , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/farmacocinética , Humanos , Masculino , Perfusión , Plásmidos/administración & dosificación , Plásmidos/genética , Plásmidos/farmacocinética , ARN Largo no Codificante , Ratas , Transducción Genética
16.
PLoS One ; 6(6): e20760, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21687669

RESUMEN

Despite numerous efforts, drug based treatments for patients suffering from lung cancer remains poor. As a promising alternative, we investigated the therapeutic potential of BC-819 for the treatment of lung cancer in mouse tumor models. BC-819 is a novel plasmid DNA which encodes for the A-fragment of Diphtheria toxin and has previously been shown to successfully inhibit tumor growth in human clinical study of bladder carcinoma. In a first set of experiments, we examined in vitro efficacy of BC-819 in human lung cancer cell-lines NCI-H460, NCI-H358 and A549, which revealed >90% reduction of cell growth. In vivo efficacy was examined in an orthotopic mouse xenograft lung cancer model and in a lung metastasis model using luminescent A549-C8-luc adenocarcinoma cells. These cells resulted in peri- and intra-bronchiolar tumors upon intrabronchial application and parenchymal tumors upon intravenous injection, respectively. Mice suffering from these lung tumors were treated with BC-819, complexed to branched polyethylenimine (PEI) and aerosolized to the mice once per week for a period of 10 weeks. Using this regimen, growth of intrabronchially induced lung tumors was significantly inhibited (p = 0.01), whereas no effect could be observed in mice suffering from lung metastasis. In summary, we suggest that aerosolized PEI/BC-819 is capable of reducing growth only in tumors arising from the luminal part of the airways and are therefore directly accessible for inhaled BC-819.


Asunto(s)
Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Plásmidos/administración & dosificación , Plásmidos/farmacología , Administración por Inhalación , Aerosoles , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Oncogenes/genética , Plásmidos/química , Polietileneimina/química
17.
Int J Clin Exp Med ; 3(4): 270-82, 2010 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-21072261

RESUMEN

BACKGROUND: There are currently no effective therapies for the treatment of ovarian cancer ascites fluid (OCAF). H19 is an RNA oncofetal gene that is present at high levels in human cancer tissues (ovarian cancer and OCAF among them), while existing at a nearly undetectable level in the surrounding normal tissue. There is evidence for a synergistic effect in cell cytotoxicity mediated by TNFα and diphtheria toxin in sensitive and resistant human ovarian tumor cell line. Thus, we tested the cytotoxic effect of TNF-α cytokine, together with the diphtheria toxin, in the therapy of ovarian cancer. METHODS: The therapeutic potential of toxin vectors carrying the DT-A gene alone (pH19-DTA), or in combination with the TNF-α gene (pH19-TNF-DTA), driven by H19 regulatory sequences were tested in ovarian carcinoma cell lines and in a heterotopic ovarian cancer model. RESULTS: The toxin vectors showed a high killing capacity when transfected into different ovarian cancer cell lines. In addition, intratumoral injection of the toxin vector into ectopically developed tumors caused 40% inhibition of tumor growth. The killing effect after injection of pH19-TNF-DTA plasmid into ectopically developed tumors was significantly higher than that showed by the pH19-DTA plasmid alone, particularly in diphtheria toxin and TNF resistant tumors. CONCLUSIONS: These observations may be the first step towards a major breakthrough in the treatment of human ovarian cancer. It should enable us to identify likely non-responders in advance, and to treat patients who are resistant to all known therapies, thereby avoiding treatment failure coupled with unnecessary suffering and cost.

18.
J Med Case Rep ; 4: 228, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20663201

RESUMEN

INTRODUCTION: Ovarian cancer ascitic fluid, which contains malignant cells, is usually present in women with an advanced stage disease. There are currently no effective therapies for the treatment of ovarian cancer ascitic fluid. We developed a new therapeutic strategy to target expression of the diphtheria toxin fragment A gene in ovarian tumor cells under the control of H19 regulatory sequences. CASE PRESENTATION: A 64-year-old Caucasian woman was diagnosed with a stage IIIc epithelial ovarian cancer. She suffered from progressive disease, accumulation of malignant ascites that needed to be drained weekly, abdominal pain, vomiting, anorexia and severe weakness. Infusion of the diphtheria toxin A chain-H19 plasmid into the peritoneum of our patient resulted in complete resolution of the ascites with minimum adverse events. CONCLUSION: On the basis of this preliminary experience, we are currently conducting an extensive Phase I study on a larger number of patients in order to assess the safety and preliminary efficacy of this novel patient-oriented treatment approach.

19.
Biochim Biophys Acta ; 1803(4): 443-51, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20117150

RESUMEN

Expression of the imprinted H19 gene is remarkably elevated in a large number of human cancers. Recently, we reported that H19 RNA is up-regulated in hypoxic stress and furthermore, it possesses oncogenic properties. However, the underlying mechanism(s) of these phenomena remain(s) unknown. Here we demonstrate a tight correlation between H19 RNA elevation by hypoxia and the status of the p53 tumor suppressor. Wild type p53 (p53(wt)) prevents the induction of H19 upon hypoxia, and upon its reconstitution in p53(null) cells. The last case is accompanied by a decrease in cell viability. The p53 effect is nuclear and seems independent of its tetramerization. Furthermore, using knockdown and over-expression approaches we identified HIF1-alpha as a critical factor that is responsible for H19 induction upon hypoxia. Knocking down HIF1-alpha abolishes H19 RNA induction, while its over-expression significantly enhances the H19 elevation in p53(null) hypoxic cells. In p53(wt) hypoxic cells simultaneous suppression of p53 and over-expression of HIF1-alpha are needed to induce H19 significantly, while each treatment separately resulting in a mild induction, indicating that the molecular mechanism of p53 suppression effect on H19 may at least in part involve interfering with HIF1-alpha activity. In vivo a significant increase in H19 expression occurred in tumors derived from p53(null) cells but not in p53(wt) cells. Taken together, our results indicate that a functional link exists between p53, HIF1-alpha and H19 that determines H19 elevation in hypoxic cancer cells. We suggest that this linkage plays a role in tumor development.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Neoplasias/metabolismo , ARN no Traducido/genética , Proteína p53 Supresora de Tumor/fisiología , Animales , Western Blotting , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones Desnudos , Neoplasias/genética , Neoplasias/patología , ARN Largo no Codificante , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/farmacología , ARN no Traducido/antagonistas & inhibidores , ARN no Traducido/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
J Transl Med ; 7: 69, 2009 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-19656414

RESUMEN

BACKGROUND: Ovarian cancer ascites fluid (OCAF), contains malignant cells, is usually present in women with an advanced stage disease and currently has no effective therapy. Hence, we developed a new therapy strategy to target the expression of diphtheria toxin gene under the control of H19 regulatory sequences in ovarian tumor cells. H19 RNA is present at high levels in human cancer tissues (including ovarian cancer), while existing at a nearly undetectable level in the surrounding normal tissue. METHODS: H19 gene expression was tested in cells from OCAF by the in-situ hybridization technique (ISH) using an H19 RNA probe. The therapeutic potential of the toxin vector DTA-H19 was tested in ovarian carcinoma cell lines and in a heterotopic animal model for ovarian cancer. RESULTS: H19 RNA was detected in 90% of patients with OCAF as determined by ISH. Intratumoral injection of DTA-H19 into ectopically developed tumors caused 40% inhibition of tumor growth. CONCLUSION: These observations may be the first step towards a major breakthrough in the treatment of human OCAF, while the effect in solid tumors required further investigation. It should enable us to identify likely non-responders in advance, and to treat patients who are resistant to all known therapies, thereby avoiding treatment failure.


Asunto(s)
Marcación de Gen , Terapia Genética/métodos , Neoplasias Ováricas/terapia , Plásmidos , ARN no Traducido/genética , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ascitis/patología , Ascitis/terapia , Línea Celular Tumoral , Toxina Diftérica/genética , Toxina Diftérica/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Transferencia de Gen , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/patología , Plásmidos/genética , Plásmidos/metabolismo , ARN Largo no Codificante , ARN no Traducido/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...