Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6178, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38485716

RESUMEN

Mitochondrial dysfunction in pancreatic ß-cells leads to impaired glucose-stimulated insulin secretion (GSIS) and type 2 diabetes (T2D), highlighting the importance of autophagic elimination of dysfunctional mitochondria (mitophagy) in mitochondrial quality control (mQC). Imeglimin, a new oral anti-diabetic drug that improves hyperglycemia and GSIS, may enhance mitochondrial activity. However, chronic imeglimin treatment's effects on mQC in diabetic ß-cells are unknown. Here, we compared imeglimin, structurally similar anti-diabetic drug metformin, and insulin for their effects on clearance of dysfunctional mitochondria through mitophagy in pancreatic ß-cells from diabetic model db/db mice and mitophagy reporter (CMMR) mice. Pancreatic islets from db/db mice showed aberrant accumulation of dysfunctional mitochondria and excessive production of reactive oxygen species (ROS) along with markedly elevated mitophagy, suggesting that the generation of dysfunctional mitochondria overwhelmed the mitophagic capacity in db/db ß-cells. Treatment with imeglimin or insulin, but not metformin, reduced ROS production and the numbers of dysfunctional mitochondria, and normalized mitophagic activity in db/db ß-cells. Concomitantly, imeglimin and insulin, but not metformin, restored the secreted insulin level and reduced ß-cell apoptosis in db/db mice. In conclusion, imeglimin mitigated accumulation of dysfunctional mitochondria through mitophagy in diabetic mice, and may contribute to preserving ß-cell function and effective glycemic control in T2D.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Triazinas , Ratones , Animales , Secreción de Insulina , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Ratones Endogámicos , Mitocondrias/metabolismo , Apoptosis
2.
Diabetologia ; 66(1): 147-162, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181536

RESUMEN

AIMS/HYPOTHESIS: Mitophagy, the selective autophagy of mitochondria, is essential for maintenance of mitochondrial function. Recent studies suggested that defective mitophagy in beta cells caused diabetes. However, because of technical difficulties, the development of a convenient and reliable method to evaluate mitophagy in beta cells in vivo is needed. The aim of this study was to establish beta cell-specific mitophagy reporter mice and elucidate the role of mitophagy in beta cell function under metabolically stressed conditions induced by a high-fat diet (HFD). METHODS: Mitophagy was assessed using newly generated conditional mitochondrial matrix targeting mitophagy reporter (CMMR) mice, in which mitophagy can be visualised specifically in beta cells in vivo using a fluorescent probe sensitive to lysosomal pH and degradation. Metabolic stress was induced in mice by exposure to the HFD for 20 weeks. The accumulation of dysfunctional mitochondria was examined by staining for functional/total mitochondria and reactive oxygen species (ROS) using specific fluorescent dyes and antibodies. To investigate the molecular mechanism underlying mitophagy in beta cells, overexpression and knockdown experiments were performed. HFD-fed mice were examined to determine whether chronic insulin treatment for 6 weeks could ameliorate mitophagy, mitochondrial function and impaired insulin secretion. RESULTS: Exposure to the HFD increased the number of enlarged (HFD-G) islets with markedly elevated mitophagy. Mechanistically, HFD feeding induced severe hypoxia in HFD-G islets, which upregulated mitophagy through the hypoxia-inducible factor 1-ɑ (Hif-1ɑ)/BCL2 interacting protein 3 (BNIP3) axis in beta cells. However, HFD-G islets unexpectedly showed the accumulation of dysfunctional mitochondria due to excessive ROS production, suggesting an insufficient capacity of mitophagy for the degradation of dysfunctional mitochondria. Chronic administration of insulin ameliorated hypoxia and reduced ROS production and dysfunctional mitochondria, leading to decreased mitophagy and restored insulin secretion. CONCLUSIONS/INTERPRETATION: We demonstrated that CMMR mice enabled the evaluation of mitophagy in beta cells. Our results suggested that metabolic stress induced by the HFD caused the aberrant accumulation of dysfunctional mitochondria, which overwhelmed the mitophagic capacity and was associated with defective maintenance of mitochondrial function and impaired insulin secretion.


Asunto(s)
Mitocondrias , Estrés Fisiológico , Ratones , Animales , Insulina , Hipoxia
3.
J Diabetes Investig ; 11(4): 814-822, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31957256

RESUMEN

AIMS/INTRODUCTION: Taste receptors, T1rs and T2rs, and the taste-selective G-protein, α-gustducin, are expressed outside the taste-sensing system, such as enteroendocrine L cells. Here, we examined whether α-gustducin also affects nutrition sensing and insulin secretion by pancreatic ß-cells. MATERIALS AND METHODS: The expression of α-gustducin and taste receptors was evaluated in ß-cell lines, and in rat and mouse islets either by quantitative polymerase chain reaction or fluorescence immunostaining. The effects of α-gustducin knockdown on insulin secretion and on cyclic adenosine monophosphate and intracellular Ca2+ levels in rat INS-1 cells were estimated. Sucralose (taste receptor agonist)-induced insulin secretion was investigated in INS-1 cells with α-gustducin suppression and in islets from mouse disease models. RESULTS: The expression of Tas1r3 and α-gustducin was confirmed in ß-cell lines and pancreatic islets. Basal levels of cyclic adenosine monophosphate, intracellular calcium and insulin secretion were significantly enhanced with α-gustducin knockdown in INS-1 cells. The expression of α-gustducin was decreased in high-fat diet-fed mice and in diabetic db/db mice. Sucralose-induced insulin secretion was not attenuated in INS-1 cells with α-gustducin knockdown or in mouse islets with decreased expression of α-gustducin. CONCLUSIONS: α-Gustducin is involved in the regulation of cyclic adenosine monophosphate, intracellular calcium levels and insulin secretion in pancreatic ß-cells in a manner independent of taste receptor signaling. α-Gustducin might play a novel role in ß-cell physiology and the development of type 2 diabetes.


Asunto(s)
Secreción de Insulina/fisiología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/fisiología , Transducina/metabolismo , Animales , Línea Celular , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Humanos , Proteínas Sensoras del Calcio Intracelular/metabolismo , Ratones , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología
4.
Mol Metab ; 27S: S81-S91, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31500835

RESUMEN

BACKGROUND: Insulin is stored within large dense-core granules in pancreatic beta (ß)-cells and is released by Ca2+-triggered exocytosis with increasing blood glucose levels. Polarized and targeted secretion of insulin from ß-cells in pancreatic islets into the vasculature has been proposed; however, the mechanisms related to cellular and molecular localization remain largely unknown. Within nerve terminals, the Ca2+-dependent release of a polarized transmitter is limited to the active zone, a highly specialized area of the presynaptic membrane. Several active zone-specific proteins have been characterized; among them, the CAST/ELKS protein family members have the ability to form large protein complexes with other active zone proteins to control the structure and function of the active zone for tight regulation of neurotransmitter release. Notably, ELKS but not CAST is also expressed in ß-cells, implying that ELKS may be involved in polarized insulin secretion from ß-cells. SCOPE OF REVIEW: This review provides an overview of the current findings regarding the role(s) of ELKS and other active zone proteins in ß-cells and focuses on the molecular mechanism underlying ELKS regulation within polarized insulin secretion from islets. MAJOR CONCLUSIONS: ELKS localizes at the vascular-facing plasma membrane of ß-cells in mouse pancreatic islets. ELKS forms a potent insulin secretion complex with L-type voltage-dependent Ca2+ channels on the vascular-facing plasma membrane of ß-cells, enabling polarized Ca2+ influx and first-phase insulin secretion from islets. This model provides novel insights into the functional polarity observed during insulin secretion from ß-cells within islets at the molecular level. This active zone-like region formed by ELKS at the vascular side of the plasma membrane is essential for coordinating physiological insulin secretion and may be disrupted in diabetes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Humanos
5.
J Clin Invest ; 129(9): 3578-3593, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31355778

RESUMEN

TAR DNA-binding protein 43 kDa (TDP-43), encoded by TARDBP, is an RNA-binding protein, the nuclear depletion of which is the histopathological hallmark of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder affecting both upper and lower motor neurons. Besides motor symptoms, patients with ALS often develop nonneuronal signs including glucose intolerance, but the underlying pathomechanism is still controversial, i.e., whether it is impaired insulin secretion and/or insulin resistance. Here, we showed that ALS subjects reduced early-phase insulin secretion and that the nuclear localization of TDP-43 was lost in the islets of autopsied ALS pancreas. Loss of TDP-43 inhibited exocytosis by downregulating CaV1.2 calcium channels, thereby reducing early-phase insulin secretion in a cultured ß cell line (MIN6) and ß cell-specific Tardbp knockout mice. Overexpression of CaV1.2 restored early-phase insulin secretion in Tardbp knocked-down MIN6 cells. Our findings suggest that TDP-43 regulates cellular exocytosis mediated by L-type voltage-dependent calcium channels and thus plays an important role in the early phase of insulin secretion by pancreatic islets. Thus, nuclear loss of TDP-43 is implicated in not only the selective loss of motor neurons but also in glucose intolerance due to impaired insulin secretion at an early stage of ALS.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteínas de Unión al ADN/metabolismo , Exocitosis , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Glucemia/metabolismo , Estudios de Casos y Controles , Núcleo Celular/metabolismo , Femenino , Prueba de Tolerancia a la Glucosa , Humanos , Resistencia a la Insulina , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Destreza Motora , Neuronas/metabolismo , Técnicas de Placa-Clamp
6.
Cell Rep ; 26(5): 1213-1226.e7, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699350

RESUMEN

Pancreatic ß cells secrete insulin by Ca2+-triggered exocytosis. However, there is no apparent secretory site similar to the neuronal active zones, and the cellular and molecular localization mechanism underlying polarized exocytosis remains elusive. Here, we report that ELKS, a vertebrate active zone protein, is used in ß cells to regulate Ca2+ influx for insulin secretion. ß cell-specific ELKS-knockout (KO) mice showed impaired glucose-stimulated first-phase insulin secretion and reduced L-type voltage-dependent Ca2+ channel (VDCC) current density. In situ Ca2+ imaging of ß cells within islets expressing a membrane-bound G-CaMP8b Ca2+ sensor demonstrated initial local Ca2+ signals at the ELKS-localized vascular side of the ß cell plasma membrane, which were markedly decreased in ELKS-KO ß cells. Mechanistically, ELKS directly interacted with the VDCC-ß subunit via the GK domain. These findings suggest that ELKS and VDCCs form a potent insulin secretion complex at the vascular side of the ß cell plasma membrane for polarized Ca2+ influx and first-phase insulin secretion from pancreatic islets.


Asunto(s)
Calcio/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Subunidades de Proteína/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Glucosa/farmacología , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Proteínas del Tejido Nervioso/deficiencia , Unión Proteica/efectos de los fármacos , Proteínas de Unión al GTP rab/deficiencia
7.
Endocrinology ; 159(11): 3674-3688, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215699

RESUMEN

Dysfunctional mitochondria are observed in ß-cells of diabetic patients, which are eventually removed by autophagy. Vesicle-associated membrane protein (VAMP)7, a vesicular SNARE protein, regulates autophagosome formation to maintain mitochondrial homeostasis and control insulin secretion in pancreatic ß-cells. However, its molecular mechanism is largely unknown. In this study, we investigated the molecular mechanism of VAMP7-dependent autophagosome formation using VAMP7-deficient ß-cells and ß-cell-derived Min6 cells. VAMP7 localized in autophagy-related (Atg)9a-resident vesicles of recycling endosomes (REs), which contributed to autophagosome formation, and it interacted with Hrb, Syntaxin16, and SNAP-47. Hrb recruited VAMP7 and Atg9a from the plasma membrane to REs. Syntaxin16 and SNAP-47 mediated autophagosome formation at a step later than the proper localization of VAMP7 to Atg9a-resident vesicles. Knockdown of Hrb, Syntaxin16, and SNAP-47 resulted in defective autophagosome formation, accumulation of dysfunctional mitochondria, and impairment of glucose-stimulated insulin secretion. Our data indicate that VAMP7 and Atg9a are initially recruited to REs to organize VAMP7 and Atg9a-resident vesicles in an Hrb-dependent manner. Additionally, VAMP7 forms a SNARE complex with Syntaxin16 and SNAP-47, which may cause fusions of Atg9a-resident vesicles during autophagosome formation. Thus, VAMP7 participates in autophagosome formation by supporting Atg9a functions that contribute to maintenance of mitochondrial quality.


Asunto(s)
Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Endosomas/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Proteínas R-SNARE/genética , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Técnicas de Silenciamiento del Gen , Secreción de Insulina , Masculino , Fusión de Membrana , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas R-SNARE/metabolismo , Sintaxina 16/genética , Proteínas de Transporte Vesicular/metabolismo
8.
Sci Rep ; 7(1): 8602, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28819213

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) is a multifunctional protein kinase involved in many cellular activities including development, differentiation and diseases. GSK3ß is thought to be constitutively activated by autophosphorylation at Tyr216 and inactivated by phosphorylation at Ser9. The GSK3ß activity has previously been evaluated by inhibitory Ser9 phosphorylation, but it does not necessarily indicate the kinase activity itself. Here, we applied the Phos-tag SDS-PAGE technique to the analysis of GSK3ß phosphoisotypes in cells and brains. There were three phosphoisotypes of GSK3ß; double phosphorylation at Ser9 and Tyr216, single phosphorylation at Tyr216 and the nonphosphorylated isotype. Active GSK3ß with phosphorylation at Tyr216 represented half or more of the total GSK3ß in cultured cells. Although levels of phospho-Ser9 were increased by insulin treatment, Ser9 phosphorylation occurred only in a minor fraction of GSK3ß. In mouse brains, GSK3ß was principally in the active form with little Ser9 phosphorylation, and the phosphoisotypes of GSK3ß changed depending on the regions of the brain, age, sex and disease conditions. These results indicate that the Phos-tag SDS-PAGE method provides a simple and appropriate measurement of active GSK3ß in vivo, and the activity is regulated by the mechanism other than phosphorylation on Ser9.


Asunto(s)
Encéfalo/enzimología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Neuronas/enzimología , Aminofenoles/farmacología , Animales , Línea Celular , Corteza Cerebral/citología , Diabetes Mellitus Experimental/patología , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Factor I del Crecimiento Similar a la Insulina/farmacología , Cloruro de Litio/farmacología , Masculino , Maleimidas/farmacología , Ratones Endogámicos ICR , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
9.
J Cell Biol ; 215(1): 121-138, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27697926

RESUMEN

The membrane fusion of secretory granules with plasma membranes is crucial for the exocytosis of hormones and enzymes. Secretion disorders can cause various diseases such as diabetes or pancreatitis. Synaptosomal-associated protein 23 (SNAP23), a soluble N-ethyl-maleimide sensitive fusion protein attachment protein receptor (SNARE) molecule, is essential for secretory granule fusion in several cell lines. However, the in vivo functions of SNAP23 in endocrine and exocrine tissues remain unclear. In this study, we show opposing roles for SNAP23 in secretion in pancreatic exocrine and endocrine cells. The loss of SNAP23 in the exocrine and endocrine pancreas resulted in decreased and increased fusion of granules to the plasma membrane after stimulation, respectively. Furthermore, we identified a low molecular weight compound, MF286, that binds specifically to SNAP23 and promotes insulin secretion in mice. Our results demonstrate opposing roles for SNAP23 in the secretion mechanisms of the endocrine and exocrine pancreas and reveal that the SNAP23-binding compound MF286 may be a promising drug for diabetes treatment.


Asunto(s)
Islotes Pancreáticos/citología , Páncreas Exocrino/citología , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Células Acinares/metabolismo , Células Acinares/ultraestructura , Amilasas/metabolismo , Animales , Fusión Celular , Exocitosis , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/metabolismo , Secreción de Insulina , Ratones Noqueados , Microscopía de Fluorescencia por Excitación Multifotónica , Modelos Biológicos , Glándula Parótida/citología , Transporte de Proteínas , Proteínas Qb-SNARE/deficiencia , Proteínas Qc-SNARE/deficiencia , Proteínas SNARE/metabolismo , Vesículas Secretoras/metabolismo , Proteína 25 Asociada a Sinaptosomas/metabolismo
10.
Diabetes ; 65(6): 1648-59, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26953164

RESUMEN

VAMP7 is a SNARE protein that mediates specific membrane fusions in intracellular trafficking and was recently reported to regulate autophagosome formation. However, its function in pancreatic ß-cells is largely unknown. To elucidate the physiological role of VAMP7 in ß-cells, we generated pancreatic ß-cell-specific VAMP7 knockout (Vamp7(flox/Y);Cre) mice. VAMP7 deletion impaired glucose-stimulated ATP production and insulin secretion, though VAMP7 was not localized to insulin granules. VAMP7-deficient ß-cells showed defective autophagosome formation and reduced mitochondrial function. p62/SQSTM1, a marker protein for defective autophagy, was selectively accumulated on mitochondria in VAMP7-deficient ß-cells. These findings suggest that accumulation of dysfunctional mitochondria that are degraded by autophagy caused impairment of glucose-stimulated ATP production and insulin secretion in Vamp7(flox/Y);Cre ß-cells. Feeding a high-fat diet to Vamp7(flox/Y);Cre mice exacerbated mitochondrial dysfunction, further decreased ATP production and insulin secretion, and consequently induced glucose intolerance. Moreover, we found upregulated VAMP7 expression in wild-type mice fed a high-fat diet and in db/db mice, a model for diabetes. Thus our data indicate that VAMP7 regulates autophagy to maintain mitochondrial quality and insulin secretion in response to pathological stress in ß-cells.


Asunto(s)
Autofagia/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocondrias/fisiología , Proteínas R-SNARE/fisiología , Adenosina Trifosfato/biosíntesis , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Homeostasis , Secreción de Insulina , Masculino , Ratones , Ratones Noqueados , Proteínas R-SNARE/deficiencia
11.
Endocrinology ; 156(2): 444-52, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25426873

RESUMEN

The physiological role of serotonin, or 5-hydroxytryptamine (5-HT), in pancreatic ß-cell function was previously elucidated using a pregnant mouse model. During pregnancy, 5-HT increases ß-cell proliferation and glucose-stimulated insulin secretion (GSIS) through the Gαq-coupled 5-HT2b receptor (Htr2b) and the 5-HT3 receptor (Htr3), a ligand-gated cation channel, respectively. However, the role of 5-HT in ß-cell function in an insulin-resistant state has yet to be elucidated. Here, we characterized the metabolic phenotypes of ß-cell-specific Htr2b(-/-) (Htr2b ßKO), Htr3a(-/-) (Htr3a knock-out [KO]), and ß-cell-specific tryptophan hydroxylase 1 (Tph1)(-/-) (Tph1 ßKO) mice on a high-fat diet (HFD). Htr2b ßKO, Htr3a KO, and Tph1 ßKO mice exhibited normal glucose tolerance on a standard chow diet. After 6 weeks on an HFD, beginning at 4 weeks of age, both Htr3a KO and Tph1 ßKO mice developed glucose intolerance, but Htr2b ßKO mice remained normoglycemic. Pancreas perfusion assays revealed defective first-phase insulin secretion in Htr3a KO mice. GSIS was impaired in islets isolated from HFD-fed Htr3a KO and Tph1 ßKO mice, and 5-HT treatment improved insulin secretion from Tph1 ßKO islets but not from Htr3a KO islets. Tph1 and Htr3a gene expression in pancreatic islets was not affected by an HFD, and immunostaining could not detect 5-HT in pancreatic islets from mice fed an HFD. Taken together, these results demonstrate that basal 5-HT levels in ß-cells play a role in GSIS through Htr3, which becomes more evident in a diet-induced insulin-resistant state.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina/fisiología , Insulina/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/fisiología , Animales , Dieta Alta en Grasa , Secreción de Insulina , Masculino , Ratones Noqueados , Receptores de Serotonina/genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(48): 19420-5, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24218571

RESUMEN

In preparation for the metabolic demands of pregnancy, ß cells in the maternal pancreatic islets increase both in number and in glucose-stimulated insulin secretion (GSIS) per cell. Mechanisms have been proposed for the increased ß cell mass, but not for the increased GSIS. Because serotonin production increases dramatically during pregnancy, we tested whether flux through the ionotropic 5-HT3 receptor (Htr3) affects GSIS during pregnancy. Pregnant Htr3a(-/-) mice exhibited impaired glucose tolerance despite normally increased ß cell mass, and their islets lacked the increase in GSIS seen in islets from pregnant wild-type mice. Electrophysiological studies showed that activation of Htr3 decreased the resting membrane potential in ß cells, which increased Ca(2+) uptake and insulin exocytosis in response to glucose. Thus, our data indicate that serotonin, acting in a paracrine/autocrine manner through Htr3, lowers the ß cell threshold for glucose and plays an essential role in the increased GSIS of pregnancy.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Receptores de Serotonina 5-HT3/metabolismo , Serotonina/farmacología , Transducción de Señal/fisiología , Animales , Femenino , Glucosa/metabolismo , Immunoblotting , Inmunohistoquímica , Secreción de Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Embarazo , Receptores de Serotonina 5-HT3/genética
13.
PLoS One ; 7(10): e47381, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23077605

RESUMEN

In glucose-induced insulin secretion from pancreatic ß-cells, a population of insulin granules fuses with the plasma membrane without the typical docking process (newcomer granule fusions), however, its mechanism is unclear. In this study, we investigated the PI3K signaling pathways involved in the upregulation of newcomer granule fusions. Acute treatment with the class IA-selective PI3K inhibitors, PIK-75 and PI-103, enhanced the glucose-induced insulin secretion. Total internal reflection fluorescent microscopy revealed that the PI3K inhibitors increased the fusion events from newcomer granules. We developed a new system for transfection into pancreatic islets and demonstrated the usefulness of this system in order for evaluating the effect of transfected genes on the glucose-induced secretion in primary cultured pancreatic islets. Using this transfection system together with a series of constitutive active mutants, we showed that the PI3K-3-phosphoinositide dependent kinase-1 (PDK1)-Akt pathway mediated the potentiation of insulin secretion. The Akt inhibitor also enhanced the glucose-induced insulin secretion in parallel with the upregulation of newcomer granule fusions, probably via increased motility of intracellular insulin granules. These data suggest that the PI3K-PDK1-Akt pathway plays a significant role in newcomer granule fusions, probably through an alteration of the dynamics of the intracellular insulin granules.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Furanos/farmacología , Glucosa/farmacología , Hidrazonas/farmacología , Secreción de Insulina , Ratones , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Piridinas/farmacología , Pirimidinas/farmacología , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Vesículas Secretoras/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Regulación hacia Arriba/efectos de los fármacos
14.
Biochem Biophys Res Commun ; 412(4): 556-60, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21854759

RESUMEN

Incretin promotes insulin secretion acutely. Recently, orally-administered DPP-4 inhibitors represent a new class of anti-hyperglycemic agents. Indeed, inhibitors of dipeptidyl peptidase-IV (DPP-4), sitagliptin, has just begun to be widely used as therapeutics for type 2 diabetes. However, the effects of sitagliptin-treatment on insulin exocytosis from single ß-cells are yet unknown. We therefore investigated how sitagliptin-treatment in db/db mice affects insulin exocytosis by treating db/db mice with des-F-sitagliptin for 2 weeks. Perfusion studies showed that 2 weeks-sitagliptin treatment potentiated insulin secretion. We then analyzed insulin granule motion and SNARE protein, syntaxin 1, by TIRF imaging system. TIRF imaging of insulin exocytosis showed the increased number of docked insulin granules and increased fusion events from them during first-phase release. In accord with insulin exocytosis data, des-F-sitagliptin-treatment increased the number of syntaxin 1 clusters on the plasma membrane. Thus, our data demonstrated that 2-weeks des-F-sitagliptin-treatment increased the fusion events of insulin granules, probably via increased number of docked insulin granules and that of syntaxin 1 clusters.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Exocitosis/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Insulina/metabolismo , Pirazinas/farmacocinética , Triazoles/farmacocinética , Animales , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Mutantes
15.
Neuropharmacology ; 60(7-8): 1364-70, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21402086

RESUMEN

Synaptotagmins (Syts) serve as a Ca²+ sensor in the release of neurotransmitters and hormones. Inositol polyphosphates (InsPPs) such as Inositol 1,3,4,5,6-pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6) bind to Ca²+-binding C2B domain of Syt I and II, and inhibit transmitter release. We have shown that the inhibition by InsPPs is reversed by Ca²+ in adrenal chromaffin cells, while a rapid accumulation of endogenous InsP5 and InsP6 upon depolarizing stimuli have been reported in these and some other cells. Such a rapid accumulation of InsPPs, if not all, might reflect their dissociation from C2B domain of Syt. To elucidate the functional relevance, we studied the effects of antibodies against C2A and C2B domains (anti-C2A Ab, anti-C2B Ab) on the accumulation of InsPPs induced by Ca²+ in digitonin-permeabilized adrenal chromaffin cells. Anti-C2B Ab by itself caused an accumulation of InsPPs in the permeabilizing medium, and increased spontaneous release of catecholamines (CA). Anti-C2A Ab abolished Ca²+-induced increase of InsPPs in cytosolic component, and inhibited Ca²+-evoked release of CA with little effect on the spontaneous release. Microinjection of InsP6 but not inositol hexakissulfate into intact chromaffin cells inhibited both spontaneous and nicotine-evoked exocytotic events. These results suggest that endogenous InsPPs bound to the C2B domain clamp spontaneous fusion of the docked or primed vesicles at resting level of intracellular Ca²+, and binding of Ca²+ to the C2A or/and C2B domain facilitate fusion dissociating InsPPs from Syt in adrenal chromaffin cells. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Catecolaminas/metabolismo , Fosfatos de Inositol/metabolismo , Sinaptotagminas/metabolismo , Animales , Calcio/metabolismo , Bovinos , Técnicas de Cultivo de Célula , Células Cromafines , Complemento C2b/metabolismo , Exocitosis/fisiología , Neurotransmisores/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología
16.
Front Biosci (Landmark Ed) ; 16(4): 1197-210, 2011 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-21196227

RESUMEN

Insulin, stored in large dense core granules, is biphasically exocytosed by glucose stimulation in pancreatic beta-cells. Several molecules, such as SNARE proteins, and Ca2+ ion are involved in the regulation of insulin exocytosis. Indeed, studies using gene targeting mice revealed critical roles of SNARE proteins and their accessory proteins, which may be associated with diabetes mellitus. In particular, the total internal reflection fluorescent (TIRF) imaging technique shed new light on the molecular mechanism of the insulin exocytotic process. In this review we discuss the mechanism of insulin exocytosis mainly from a point of view of imaging techniques.


Asunto(s)
Calcio/metabolismo , Gránulos Citoplasmáticos/metabolismo , Insulina/metabolismo , Proteínas SNARE/fisiología , Exocitosis/fisiología , Secreción de Insulina , Microscopía Fluorescente , Fosfatidilinositol 3-Quinasa/metabolismo , Vesículas Secretoras/metabolismo , Proteína de Unión al GTP rac1/metabolismo
17.
PLoS One ; 5(12): e15553, 2010 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-21151568

RESUMEN

BACKGROUND: A variant of the CDKAL1 gene was reported to be associated with type 2 diabetes and reduced insulin release in humans; however, the role of CDKAL1 in ß cells is largely unknown. Therefore, to determine the role of CDKAL1 in insulin release from ß cells, we studied insulin release profiles in CDKAL1 gene knockout (CDKAL1 KO) mice. PRINCIPAL FINDINGS: Total internal reflection fluorescence imaging of CDKAL1 KO ß cells showed that the number of fusion events during first-phase insulin release was reduced. However, there was no significant difference in the number of fusion events during second-phase release or high K(+)-induced release between WT and KO cells. CDKAL1 deletion resulted in a delayed and slow increase in cytosolic free Ca(2+) concentration during high glucose stimulation. Patch-clamp experiments revealed that the responsiveness of ATP-sensitive K(+) (K(ATP)) channels to glucose was blunted in KO cells. In addition, glucose-induced ATP generation was impaired. Although CDKAL1 is homologous to cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1, there was no difference in the kinase activity of CDK5 between WT and CDKAL1 KO islets. CONCLUSIONS/SIGNIFICANCE: We provide the first report describing the function of CDKAL1 in ß cells. Our results indicate that CDKAL1 controls first-phase insulin exocytosis in ß cells by facilitating ATP generation, K(ATP) channel responsiveness and the subsequent activity of Ca(2+) channels through pathways other than CDK5-mediated regulation.


Asunto(s)
Adenosina Trifosfato/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Insulina/metabolismo , Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Animales , Linfocitos B/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citosol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Exocitosis , Variación Genética , Glucosa/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Técnicas de Placa-Clamp , Potasio/química , ARNt Metiltransferasas
18.
Biochem J ; 432(2): 375-86, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20854263

RESUMEN

Functional insulin receptor and its downstream effector PI3K (phosphoinositide 3-kinase) have been identified in pancreatic ß-cells, but their involvement in the regulation of insulin secretion from ß-cells remains unclear. In the present study, we investigated the physiological role of insulin and PI3K in glucose-induced biphasic insulin exocytosis in primary cultured ß-cells and insulinoma Min6 cells using total internal reflection fluorescent microscopy. The pretreatment of ß-cells with insulin induced the rapid increase in intracellular Ca2+ levels and accelerated the exocytotic response without affecting the second-phase insulin secretion. The inhibition of PI3K not only abolished the insulin-induced rapid development of the exocytotic response, but also potentiated the second-phase insulin secretion. The rapid development of Ca2+ and accelerated exocytotic response induced by insulin were accompanied by the translocation of the Ca2+-permeable channel TrpV2 (transient receptor potential V2) in a PI3K-dependent manner. Inhibition of TrpV2 by the selective blocker tranilast, or the expression of shRNA (short-hairpin RNA) against TrpV2 suppressed the effect of insulin in the first phase, but the second phase was not affected. Thus our results demonstrate that insulin treatment induced the acceleration of the exocytotic response during the glucose-induced first-phase response by the insertion of TrpV2 into the plasma membrane in a PI3K-dependent manner.


Asunto(s)
Canales de Calcio/genética , Células Secretoras de Insulina/fisiología , Insulina/fisiología , Canales Catiónicos TRPV/genética , Animales , Secuencia de Bases , Línea Celular , ADN/química , ADN/genética , ADN Complementario/genética , Exocitosis , Hormona del Crecimiento/metabolismo , Homeostasis , Humanos , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Fosfatidilinositol 3-Quinasas/metabolismo , Transfección
19.
Diabetes ; 59(10): 2522-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20622165

RESUMEN

OBJECTIVE: Pertussis toxin uncoupling-based studies have shown that Gαi and Gαo can inhibit insulin secretion in pancreatic ß-cells. Yet it is unclear whether Gαi and Gαo operate through identical mechanisms and how these G-protein-mediated signals inhibit insulin secretion in vivo. Our objective is to examine whether/how Gαo regulates islet development and insulin secretion in ß-cells. RESEARCH DESIGN AND METHODS: Immunoassays were used to analyze the Gαo expression in mouse pancreatic cells. Gαo was specifically inactivated in pancreatic progenitor cells by pancreatic cell-specific gene deletion. Hormone expression and insulin secretion in response to different stimuli were assayed in vivo and in vitro. Electron microscope and total internal reflection fluorescence-based assays were used to evaluate how Gαo regulates insulin vesicle docking and secretion in response to glucose stimulation. RESULTS: Islet cells differentiate properly in Gαo(-/-) mutant mice. Gαo inactivation significantly enhances insulin secretion both in vivo and in isolation. Gαo nullizygous ß-cells contain an increased number of insulin granules docked on the cell plasma membrane, although the total number of vesicles per ß-cell remains unchanged. CONCLUSIONS: Gαo is not required for endocrine islet cell differentiation, but it regulates the number of insulin vesicles docked on the ß-cell membrane.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/antagonistas & inhibidores , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animales , Diferenciación Celular , Subunidades alfa de la Proteína de Unión al GTP/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Homeostasis , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/fisiología , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Transactivadores/genética
20.
Biochem Biophys Res Commun ; 390(1): 16-20, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19766598

RESUMEN

To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic beta cells, the regulated biphasic exocytosis from two types of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.


Asunto(s)
Exocitosis , Péptido 1 Similar al Glucagón/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Péptido 1 Similar al Glucagón/química , Hormona de Crecimiento Humana/química , Hormona de Crecimiento Humana/genética , Hormona de Crecimiento Humana/metabolismo , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Fluorescente/métodos , Vesículas Secretoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...