Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 7(12): 1017-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26587718

RESUMEN

Oxynitrides have been explored extensively in the past decade because of their interesting properties, such as visible-light absorption, photocatalytic activity and high dielectric permittivity. Their synthesis typically requires high-temperature NH3 treatment (800-1,300 °C) of precursors, such as oxides, but the highly reducing conditions and the low mobility of N(3-) species in the lattice place significant constraints on the composition and structure-and hence the properties-of the resulting oxynitrides. Here we show a topochemical route that enables the preparation of an oxynitride at low temperatures (<500 °C), using a perovskite oxyhydride as a host. The lability of H(-) in BaTiO3-xHx (x ≤ 0.6) allows H(-)/N(3-) exchange to occur, and yields a room-temperature ferroelectric BaTiO3-xN2x/3. This anion exchange is accompanied by a metal-to-insulator crossover via mixed O-H-N intermediates. These findings suggest that this 'labile hydride' strategy can be used to explore various oxynitrides, and perhaps other mixed anionic compounds.

2.
Inorg Chem ; 51(21): 11371-6, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23082857

RESUMEN

The oxyhydride solid solutions (Ca,Sr)TiO(3-x)H(x) and (Sr,Ba)TiO(3-x)H(x) have been prepared by reducing the corresponding ATiO(3) oxides with calcium hydride. Under the reaction conditions examined, a hydride content of x = 0.1-0.3 was obtained for all compositions. Compared to our previous result with BaTiO(3-x)H(x), the larger particle size in this study (20-30 µm vs 170 nm) resulted in a somewhat lower hydride amount despite prolonged reaction times. We examined changes in cell volume, octahedral tilt angle, and site occupancy of different anion sites after conversion to oxyhydrides; it appears that these oxyhydrides fit the geometrical descriptions typical for regular ABO(3) perovskites quite well. The hydrogen release temperature, previously shown to be indicative of the hydride exchange temperature, however, does not scale linearly with the A-site composition, indicating a potential effect of chemical randomness.

3.
Nat Mater ; 11(6): 507-11, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22504535

RESUMEN

In oxides, the substitution of non-oxide anions (F(-),S(2-),N(3-) and so on) for oxide introduces many properties, but the least commonly encountered substitution is where the hydride anion (H(-)) replaces oxygen to form an oxyhydride. Only a handful of oxyhydrides have been reported, mainly with electropositive main group elements or as layered cobalt oxides with unusually low oxidation states. Here, we present an oxyhydride of the perhaps most well-known perovskite, BaTiO(3), as an O(2-)/H(-) solid solution with hydride concentrations up to 20% of the anion sites. BaTiO(3-x)H(x) is electronically conducting, and stable in air and water at ambient conditions. Furthermore, the hydride species is exchangeable with hydrogen gas at 400 °C. Such an exchange implies diffusion of hydride, and interesting diffusion mechanisms specific to hydrogen may be at play. Moreover, such a labile anion in an oxide framework should be useful in further expanding the mixed-anion chemistry of the solid state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...