Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 28(10): 15112-15121, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403544

RESUMEN

We performed the first direct measurement of the frequency ratio between a mercury (199Hg) and an ytterbium (171Yb) optical lattice clock to find νHg/νYb = 2.177 473 194 134 565 07(19) with the fractional uncertainty of 8.8 × 10-17. The ratio is in excellent agreement with expectations from the ratios νHg/νSr and νYb/νSr obtained previously in comparisons against a strontium (87Sr) optical lattice clock. The completed closure (νHg/νYb)(νYb/νSr)(νSr/νHg) - 1 = 0.4(1.3) × 10-16 tests the frequency reproducibility of the optical lattice clocks beyond what is achievable in comparison against the current realization of the second in the International System of Units (SI).

2.
Opt Express ; 28(7): 9186-9197, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32225530

RESUMEN

We report a cascaded optical fiber link which connects laboratories in RIKEN, the University of Tokyo, and NTT within a 100-km region using a transfer light at 1397 nm, a subharmonic of the Sr clock frequency. The multiple cascaded link employing several laser repeater stations benefits from a wide feedback bandwidth for fiber noise compensation, which allows constructing optical lattice clock networks based on the master-slave configuration. We developed the laser repeater stations based on planar lightwave circuits to significantly reduce the interferometer noise for improved link stability. We implemented a 240-km-long cascaded link in a UTokyo-NTT-UTokyo loop using light sent from RIKEN via a 30-km-long link. In environments with large fiber noise, the link instability is 3 × 10-16 at an averaging time of 1 s and reaches 1 × 10-18 at 2,600 s.

3.
Opt Lett ; 41(4): 705-8, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26872168

RESUMEN

Continuous-wave output at 229 nm for the application of laser cooling of Cd atoms was generated by the fourth harmonic using two successive second-harmonic generation stages. Employing a single-frequency optically pumped semiconductor laser as a fundamental source, 0.56 W of output at 229 nm was observed with a 10-mm long, Brewster-cut BBO crystal in an external cavity with 1.62 W of 458 nm input. Conversion efficiency from 458 nm to 229 nm was more than 34%. By applying a tapered amplifier (TA) as a fundamental source, we demonstrated magneto-optical trapping of all stable Cd isotopes including isotopes Cd111 and Cd113, which are applicable to optical lattice clocks.

4.
Phys Rev Lett ; 114(23): 230801, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-26196788

RESUMEN

We report on a frequency ratio measurement of a (199)Hg-based optical lattice clock referencing a (87)Sr-based clock. Evaluations of lattice light shift, including atomic-motion-dependent shift, enable us to achieve a total systematic uncertainty of 7.2×10(-17) for the Hg clock. The frequency ratio is measured to be νHg/νSr=2.629 314 209 898 909 60(22) with a fractional uncertainty of 8.4×10(-17), which is smaller than the uncertainty of the realization of the International System of Units (SI) second, i.e., the SI limit.

5.
Phys Rev Lett ; 110(20): 200401, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167384

RESUMEN

A search for Lorentz violation in electrodynamics was performed by measuring the resonant frequency difference between two counterpropagating directions of an optical ring cavity. Our cavity contains a dielectric element, which makes our cavity sensitive to the violation. The laser frequency is stabilized to the counterclockwise resonance of the cavity, and the transmitted light is reflected back into the cavity for resonant frequency comparison with the clockwise resonance. This double-pass configuration enables a null experiment and gives high common mode rejection of environmental disturbances. We found no evidence for odd-parity anisotropy at the level of δc/c ≲ 10(-14). Within the framework of the standard model extension, our result put more than 5 times better limits on three odd-parity parameters κ(o+)(JK) and a 12 times better limit on the scalar parameter κ(tr) compared with the previous best limits.

6.
Opt Express ; 19(23): 22588-93, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-22109138

RESUMEN

We proposed a method to determine device quality in heat removal. Temperature change depending on SH power was analyzed by fitting with a new model to characterize heat removal performance of SHG modules, named as phase-matched calorimetry (PMC). The thermal disposal performance of SHG devices was improved by combination of metal housing and reduced crystal aperture. With a tight aperture, we demonstrated a 19 W single-pass 532-nm SHG at a conversion efficiency of 26.5% in a 10-mm-long PPMgSLT crystal without saturation.

7.
Opt Lett ; 36(2): 238-40, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21263512

RESUMEN

Amplitude modulation of laser light is required for resonant sideband extraction employed in gravitational-wave detectors. Amplitude modulation with electro-optic phase modulators is realized by interferometric phase-to-amplitude conversion. Although two outputs modulated at opposite phases to each other are obtained, usually only one of them is utilized and the other is abandoned. The reuse of this abandoned light improves the power efficiency of the modulation. This can be realized by inverting the modulation phase of one output with a delay line and adding it to the other coherently. Moreover, this system selects a high-efficiency operating point and modulates the light in a linear range. We demonstrate that the modulation system can be operated with a power loss that is due only to the losses of the optical components.

8.
Rev Sci Instrum ; 81(7): 073105, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20687703

RESUMEN

Second-generation gravitational wave detectors require a highly stable laser with an output power greater than 100 W to attain their target sensitivity. We have developed a frequency stabilization system for a 100-W injection-locked Nd:YAG (yttrium aluminum garnet) laser. By placing an external wideband electro-optic modulator used as a fast-frequency actuator in the optical path of the slave output, we can circumvent a phase delay in the frequency control loop originating from the pole of an injection-locked slave cavity. Thus, we have developed an electro-optic modulator made of a MgO-doped stoichiometric LiNbO(3) crystal. Using this modulator, we achieve a frequency control bandwidth of 800 kHz and a control gain of 180 dB at 1 kHz. These values satisfy the requirement for a laser frequency control loop in second-generation gravitational wave detectors.

9.
Opt Express ; 16(15): 11294-9, 2008 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-18648448

RESUMEN

We investigated thermal behaviors of single-pass second-harmonic generation of continuous wave green radiation with high efficiency by quasi-phase matching in periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT). Heat generation turned out to be directly related to the green light absorption in the material. Strong relation between an upper limit of the second harmonic power and confocal parameter was found. Single-pass second-harmonic generation of 16.1 W green power was achieved with 17.6% efficiency in Mg:SLT at room temperature.


Asunto(s)
Diseño Asistido por Computadora , Rayos Láser , Litio/química , Magnesio/química , Modelos Teóricos , Óxidos/química , Tantalio/química , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Ensayo de Materiales , Dispersión de Radiación , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...