Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 15256, 2020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32938985

RESUMEN

Although yellow and orange petal colors are derived from carotenoids in many plant species, this has not yet been demonstrated for the order Caryophyllales, which includes carnations. Here, we identified a carnation cultivar with pale yellow flowers that accumulated carotenoids in petals. Additionally, some xanthophyll compounds were esterified, as is the case for yellow flowers in other plant species. Ultrastructural analysis showed that chromoplasts with numerous plastoglobules, in which flower-specific carotenoids accumulate, were present in the pale yellow petals. RNA-seq and RT-qPCR analyses indicated that the expression levels of genes for carotenoid biosynthesis and esterification in pale yellow and pink petals (that accumulate small amounts of carotenoids) were similar or lower than in green petals (that accumulate substantial amounts of carotenoids) and white petals (that accumulate extremely low levels of carotenoids). Pale yellow and pink petals had a considerably lower level of expression of genes for carotenoid degradation than white petals, suggesting that reduced degradation activity caused accumulation of carotenoids. Our results indicate that some carnation cultivars can synthesize and accumulate esterified carotenoids. By manipulating the rate of biosynthesis and esterification of carotenoids in these cultivars, it should be feasible to produce novel carnation cultivars with vivid yellow flowers.


Asunto(s)
Vías Biosintéticas , Carotenoides/metabolismo , Dianthus/crecimiento & desarrollo , Plastidios/metabolismo , Carotenoides/química , Dianthus/genética , Dianthus/metabolismo , Esterificación , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plastidios/genética , Análisis de Secuencia de ARN
2.
Sci Rep ; 10(1): 1299, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992834

RESUMEN

The majority of carotenoids in petals are xanthophylls and most of these xanthophylls are esterified with fatty acids. Although petunia (Petunia x hybrida) is an important ornamental plant, it cannot accumulate enough carotenoids to have deep-yellow flowers. Our previous study suggested that low esterification activity causes low carotenoid accumulation in petunia corollas. Here, we introduced xanthophyll esterase (XES) from the petals of Ipomoea obscura, tomato (Solanum lycopersicum), and marigold (Tagetes erecta) into a pale-yellow-flowered cultivar of petunia to see whether these affect carotenoid accumulation in petunia corollas. Carotenoid contents and the proportions of esterified xanthophylls were elevated in the corollas of XES-overexpressing (XES-OX) transformants. Expression analysis showed that the transcript levels of endogenous carotenoid biosynthetic genes, which included geranylgeranyl diphosphate synthase 2, ζ-carotene desaturase, and lycopene ß-ring cyclase in corolla tubes were upregulated in XES-OX plants. In addition, we discovered a difference in the composition of esterified xanthophylls among XES-OX plants, which may be caused by differences in the substrate specificity of their respective XESs. We conclude that esterification is an important process for carotenoid accumulation and XES is a useful tool for the quantitative and qualitative control of carotenoid accumulation in petals.


Asunto(s)
Esterasas , Flores , Expresión Génica , Petunia , Pigmentación , Proteínas de Plantas , Plantas Modificadas Genéticamente , Xantófilas/metabolismo , Esterasas/biosíntesis , Esterasas/genética , Flores/enzimología , Flores/genética , Petunia/enzimología , Petunia/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética
3.
Sci Rep ; 9(1): 13947, 2019 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-31558738

RESUMEN

The use of DNA markers has revolutionized selection in crop breeding by linkage mapping and QTL analysis, but major problems still remain for polyploid species where marker-assisted selection lags behind the situation in diploids because of its high genome complexity. To overcome the complex genetic mode in the polyploids, we investigated the development of a strategy of genome-wide association study (GWAS) using single-dose SNPs, which simplify the segregation patterns associated polyploids, with respect to the development of DNA markers. In addition, we employed biparental populations for the GWAS, wherein the SNP allele frequency could be predicted. The research investigated whether the method could be used to effectively develop DNA markers for petal color in autohexaploid chrysanthemum (Chrysanthemum morifolium; 2n = 6x = 54). The causal gene for this trait is already-known CmCCD4a encoding a dioxygenase which cleaves carotenoids in petals. We selected 9,219 single-dose SNPs, out of total 52,489 SNPs identified by dd-RAD-Seq, showing simplex (1 × 0) and double-simplex (1 × 1) inheritance pattern according to alternative allele frequency with respect to the SNP loci in the F1 population. GWAS, using these single-dose SNPs, discovered highly reproducible SNP markers tightly linked to the causal genes. This is the first report of a straightforward GWAS-based marker developing system for use in autohexaploid species.


Asunto(s)
Chrysanthemum/genética , Flores/genética , Polimorfismo de Nucleótido Simple , Poliploidía , Carotenoides/metabolismo , Flores/metabolismo , Genoma de Planta , Estudio de Asociación del Genoma Completo/métodos , Pigmentación/genética
4.
Metabolomics ; 15(9): 118, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451959

RESUMEN

INTRODUCTION: The color variations of ornamental flowers are often generated by ion-beam and gamma irradiation mutagenesis. However, mutation rates differ significantly even among cultivars of the same species, resulting in high cost and intensive labor for flower color breeding. OBJECTIVES: We aimed to establish a metabolome-based strategy to identify biomarkers and select promising parental lines with high mutation rates using Chrysanthemum as the case study. METHODS: The mutation rates associated with flower color were measured in 10 chrysanthemum cultivars with pink, yellow, or white flowers after soft X-ray irradiation at the floret-formation stage. The metabolic profiles of the petals of these cultivars were clarified by widely targeted metabolomics and targeted carotenoid analysis using liquid chromatography-tandem quadrupole mass spectrometry. Metabolome and carotenoid data were subjected to an un-supervised principal component analysis (PCA) and a supervised logistic regression with least absolute shrinkage and selection operator (LASSO). RESULTS: The PCA of the metabolic profile data separated chrysanthemum cultivars according to flower color rather than mutation rates. By contrast, logistic regression with LASSO generated a discrimination model to separate cultivars into two groups with high or low mutation rates, and selected 11 metabolites associated with mutation rates that can be biomarkers candidates for selecting parental lines for mutagenesis. CONCLUSION: This metabolome-based strategy to identify metabolite markers for mutation rates associated with flower color might be applied to other ornamental flowers to accelerate mutation breeding for generating new cultivars with a wider range of flower colors.


Asunto(s)
Chrysanthemum/metabolismo , Metaboloma , Metabolómica/métodos , Tasa de Mutación , Fitomejoramiento/métodos , Chrysanthemum/genética , Flores/genética , Flores/metabolismo , Pigmentación/genética
5.
Breed Sci ; 69(1): 117-126, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31086489

RESUMEN

Petunia (Petunia hybrida) is an important ornamental plant with a wide range of corolla colors. Although pale-yellow-flowered cultivars, with a low amount of carotenoids in their corollas, are now available, no deep-yellow-flowered cultivars exist. To find why petunia cannot accumulate enough carotenoids to have deep-yellow flowers, we compared carotenoid profiles and expression of carotenoid metabolic genes between pale-yellow-flowered petunia and deep-yellow-flowered calibrachoa (Calibrachoa hybrida), a close relative. The carotenoid contents and the ratios of esterified xanthophylls to total xanthophylls in petunia corollas were significantly lower than those in calibrachoa, despite similar carotenoid components. A lower esterification rate of trans-xanthophylls than of cis-xanthophylls in petunia suggests that petunia xanthophyll esterase (XES) has low substrate specificity for trans-xanthophylls, which are more abundant than cis-xanthophylls in petunia corolla. The expression of genes encoding key enzymes of carotenoid biosynthesis was lower and that of a carotenoid catabolic gene was higher in petunia. XES expression was significantly lower in petunia. The results suggest that low biosynthetic activity, high cleavage activity, and low esterification activity cause low carotenoid accumulation in petunia corollas.

6.
Plant Sci ; 280: 90-96, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30824032

RESUMEN

We have previously found that a gene closely related to Arabidopsis CONSTANS-like 16 (COL16) was coordinately expressed with chlorophyll content in chrysanthemum petals and leaves. Here, to elucidate whether COL16 is involved in the regulation of chlorophyll biosynthesis and accumulation, we analyzed the function of COL16 in petunia (Petunia hybrida). We identified three petunia COL16 homologs: PhCOL16a, PhCOL16b, and PhCOL16c. Expression patterns of all three homologs were associated with chlorophyll content, with lower levels in white corollas than in pale green corollas, and relatively high levels in leaves. The result suggests that PhCOL16 homologs are involved in chlorophyll accumulation. We introduced a PhCOL16a overexpression construct into petunia. The transgenic plants had pale green corollas with a higher chlorophyll content than wild-type plants. Expression of genes encoding key enzymes of chlorophyll biosynthesis was significantly higher in the transgenic plants than in the wild-type plants. The results indicate that PhCOL16 positively regulates chlorophyll biosynthesis.


Asunto(s)
Petunia/metabolismo , Proteínas de Plantas/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo
7.
Breed Sci ; 68(1): 1, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29681742
8.
Breed Sci ; 68(1): 119-127, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29681754

RESUMEN

Chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the most important floricultural crops in the world. Although the origin of modern chrysanthemum cultivars is uncertain, several species belonging to the family Asteraceae are considered to have been integrated during the long history of breeding. The flower color of ancestral species is limited to yellow, pink, and white, and is derived from carotenoids, anthocyanins, and the absence of both pigments, respectively. A wide range of flower colors, including purplish-red, orange, red, and dark red, has been developed by increasing the range of pigment content or the combination of both pigments. Recently, green-flowered cultivars containing chlorophylls in their ray petals have been produced, and have gained popularity. In addition, blue/violet flowers have been developed using a transgenic approach. Flower color is an important trait that influences the commercial value of chrysanthemum cultivars. Understanding the molecular mechanisms that regulate flower pigmentation may provide important implications for the rationale manipulation of flower color. This review describes the pigment composition, genetics, and molecular basis of ray petal color formation in chrysanthemum cultivars.

9.
Transgenic Res ; 27(1): 25-38, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29247330

RESUMEN

Japanese morning glory, Ipomoea nil, exhibits a variety of flower colours, except yellow, reflecting the accumulation of only trace amounts of carotenoids in the petals. In a previous study, we attributed this effect to the low expression levels of carotenogenic genes in the petals, but there may be other contributing factors. In the present study, we investigated the possible involvement of carotenoid cleavage dioxygenase (CCD), which cleaves specific double bonds of the polyene chains of carotenoids, in the regulation of carotenoid accumulation in the petals of I. nil. Using bioinformatics analysis, seven InCCD genes were identified in the I. nil genome. Sequencing and expression analyses indicated potential involvement of InCCD4 in carotenoid degradation in the petals. Successful knockout of InCCD4 using the CRISPR/Cas9 system in the white-flowered cultivar I. nil cv. AK77 caused the white petals to turn pale yellow. The total amount of carotenoids in the petals of ccd4 plants was increased 20-fold relative to non-transgenic plants. This result indicates that in the petals of I. nil, not only low carotenogenic gene expression but also carotenoid degradation leads to extremely low levels of carotenoids.


Asunto(s)
Dioxigenasas/genética , Flores/fisiología , Ipomoea nil/genética , Pigmentación/genética , Proteínas de Plantas/genética , Sistemas CRISPR-Cas , Carotenoides/genética , Carotenoides/metabolismo , Flores/genética , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Genoma de Planta , Ipomoea nil/fisiología , Mutagénesis , Filogenia , Pigmentación/fisiología , Plantas Modificadas Genéticamente
10.
11.
BMC Plant Biol ; 17(1): 202, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29141585

RESUMEN

BACKGROUND: Chlorophylls (Chls) are magnesium-containing tetrapyrrole macromolecules responsible for the green color in plants. The Chl metabolic pathway has been intensively studied and nearly all the enzymes involved in the pathway have been identified and characterized. Synthesis and activity of these enzymes are tightly regulated in tissue- and developmental stage-specific manners. Leaves contain substantial amounts of Chls because Chls are indispensable for photosynthesis. In contrast, petals generally contain only trace amounts of Chls, which if present would mask the bright petal color. Limited information is available about the mechanisms that control such tissue-specific accumulation of Chls. RESULTS: To identify the regulatory steps that control Chl accumulation, we compared gene expression in petals and leaves of chrysanthemum cultivars with different Chl levels. Microarray and quantitative real-time PCR analyses showed that the expression levels of Chl biosynthesis genes encoding glutamyl-tRNA reductase, Mg-protoporphyrin IX chelatase, Mg-protoporphyrin IX monomethylester cyclase, and protochlorophyllide oxidoreductase were well associated with Chl content: their expression levels were lower in white petals than in green petals, and were highest in leaves. Among Chl catabolic genes, expression of STAY-GREEN, encoding Mg-dechelatase, which is a key enzyme controlling Chl degradation, was considerably higher in white and green petals than in leaves. We searched for transcription factor genes whose expression was well related to Chl level in petals and leaves and found three such genes encoding MYB113, CONSTANS-like 16, and DREB and EAR motif protein. CONCLUSIONS: From our transcriptome analysis, we assume that a low rate of Chl biosynthesis and a high rate of Chl degradation lead to the absence of Chls in white chrysanthemum petals. We identified several candidate transcription factors that might affect Chl accumulation in chrysanthemum petals. Functional analysis of these transcription factors will provide a basis for future molecular studies of tissue-specific Chl accumulation.


Asunto(s)
Clorofila/metabolismo , Chrysanthemum/metabolismo , Flores/metabolismo , Hojas de la Planta/metabolismo , Clorofila/análisis , Chrysanthemum/genética , Flores/química , Perfilación de la Expresión Génica , Genes de Plantas , Redes y Vías Metabólicas , Microscopía Electrónica de Transmisión , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/química , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
BMC Genomics ; 18(1): 683, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870156

RESUMEN

BACKGROUND: Chrysanthemum morifolium is one of the most economically valuable ornamental plants worldwide. Chrysanthemum is an allohexaploid plant with a large genome that is commercially propagated by vegetative reproduction. New cultivars with different floral traits, such as color, morphology, and scent, have been generated mainly by classical cross-breeding and mutation breeding. However, only limited genetic resources and their genome information are available for the generation of new floral traits. RESULTS: To obtain useful information about molecular bases for floral traits of chrysanthemums, we read expressed sequence tags (ESTs) of chrysanthemums by high-throughput sequencing using the 454 pyrosequencing technology. We constructed normalized cDNA libraries, consisting of full-length, 3'-UTR, and 5'-UTR cDNAs derived from various tissues of chrysanthemums. These libraries produced a total number of 3,772,677 high-quality reads, which were assembled into 213,204 contigs. By comparing the data obtained with those of full genome-sequenced species, we confirmed that our chrysanthemum contig set contained the majority of all expressed genes, which was sufficient for further molecular analysis in chrysanthemums. CONCLUSION: We confirmed that our chrysanthemum EST set (contigs) contained a number of contigs that encoded transcription factors and enzymes involved in pigment and aroma compound metabolism that was comparable to that of other species. This information can serve as an informative resource for identifying genes involved in various biological processes in chrysanthemums. Moreover, the findings of our study will contribute to a better understanding of the floral characteristics of chrysanthemums including the myriad cultivars at the molecular level.


Asunto(s)
Chrysanthemum/anatomía & histología , Chrysanthemum/genética , Etiquetas de Secuencia Expresada/metabolismo , Flores/anatomía & histología , Genes de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencia de Aminoácidos , Carotenoides/metabolismo , Anotación de Secuencia Molecular , Terpenos/metabolismo , Factores de Transcripción/genética
13.
Plant Biotechnol (Tokyo) ; 34(4): 177-185, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31275025

RESUMEN

Japanese morning glory, Ipomoea nil, has several coloured flowers except yellow, because it can accumulate only trace amounts of carotenoids in the petal. To make the petal yellow with carotenoids, we introduced five carotenogenic genes (geranylgeranyl pyrophosphate synthase, phytoene synthase, lycopene ß-cyclase and ß-ring hydroxylase from Ipomoea obscura var. lutea and bacterial phytoene desaturase from Pantoea ananatis) to white-flowered I. nil cv. AK77 with a petal-specific promoter by Rhizobium (Agrobacterium)-mediated transformation method. We succeeded to produce transgenic plants overexpressing carotenogenic genes. In the petal of the transgenic plants, mRNA levels of the carotenogenic genes were 10 to 1,000 times higher than those of non-transgenic control. The petal colour did not change visually; however, carotenoid concentration in the petal was increased up to about ten-fold relative to non-transgenic control. Moreover, the components of carotenoids in the petal were diversified, in particular, several ß-carotene derivatives, such as zeaxanthin and neoxanthin, were newly synthesized. This is the first report, to our knowledge, of changing the component and increasing the amount of carotenoid in petals that lack ability to biosynthesize carotenoids.

15.
Sci Rep ; 6: 23609, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-27021284

RESUMEN

Chlorophyll (Chl) degradation occurs during leaf senescence, embryo degreening, bud breaking, and fruit ripening. The Chl catabolic pathway has been intensively studied and nearly all the enzymes involved are identified and characterized; however, the molecular regulatory mechanisms of this pathway are largely unknown. In this study, we performed yeast one-hybrid screening using a transcription factor cDNA library to search for factors controlling the expression of Chl catabolic genes. We identified ANAC046 as a common regulator that directly binds to the promoter regions of NON-YELLOW COLORING1, STAY-GREEN1 (SGR1), SGR2, and PHEOPHORBIDE a OXYGENASE. Transgenic plants overexpressing ANAC046 exhibited an early-senescence phenotype and a lower Chl content in comparison with the wild-type plants, whereas loss-of-function mutants exhibited a delayed-senescence phenotype and a higher Chl content. Microarray analysis of ANAC046 transgenic plants showed that not only Chl catabolic genes but also senescence-associated genes were positively regulated by ANAC046. We conclude that ANAC046 is a positive regulator of Arabidopsis leaf senescence and exerts its effect by controlling the expression of Chl catabolic genes and senescence-associated genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Western Blotting , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Microscopía Electrónica de Transmisión , Mutación , Fosfolipasas/genética , Fosfolipasas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/clasificación , Factores de Transcripción/genética
16.
PLoS One ; 9(12): e113738, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25470367

RESUMEN

Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation.


Asunto(s)
Clorofila/genética , Dianthus/fisiología , Flores/genética , Arabidopsis/genética , Dianthus/genética , Flores/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/fisiología
17.
Plant J ; 79(3): 453-65, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24888879

RESUMEN

Xanthophylls, the pigments responsible for yellow to red coloration, are naturally occurring carotenoid compounds in many colored tissues of plants. These pigments are esterified within the chromoplast; however, little is known about the mechanisms underlying their accumulation in flower organs. In this study, we characterized two allelic tomato (Solanum lycopersicum L.) mutants, pale yellow petal (pyp) 1-1 and pyp1-2, that have reduced yellow color intensity in the petals and anthers due to loss-of-function mutations. Carotenoid analyses showed that the yellow flower organs of wild-type tomato contained high levels of xanthophylls that largely consisted of neoxanthin and violaxanthin esterified with myristic and/or palmitic acids. Functional disruption of PYP1 resulted in loss of xanthophyll esters, which was associated with a reduction in the total carotenoid content and disruption of normal chromoplast development. These findings suggest that xanthophyll esterification promotes the sequestration of carotenoids in the chromoplast and that accumulation of these esters is important for normal chromoplast development. Next-generation sequencing coupled with map-based positional cloning identified the mutant alleles responsible for the pyp1 phenotype. PYP1 most likely encodes a carotenoid modifying protein that plays a vital role in the production of xanthophyll esters in tomato anthers and petals. Our results provide insight into the molecular mechanism underlying the production of xanthophyll esters in higher plants, thereby shedding light on a longstanding mystery.


Asunto(s)
Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Xantófilas/genética , Xantófilas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
18.
DNA Res ; 21(3): 231-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24344172

RESUMEN

The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568,887,315 bp, consisting of 45,088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16,644 bp and 60,737 bp, respectively, and the longest scaffold was 1,287,144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼ 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp.


Asunto(s)
Dianthus/genética , Genoma de Planta , Secuencia de Bases , ADN de Plantas/genética , Bases de Datos Genéticas , Genes de Plantas , Ligamiento Genético , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
19.
Plant Cell Physiol ; 54(10): 1684-95, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23926063

RESUMEN

Chrysanthemums (Chrysanthemum morifolium Ramat.) have no purple-, violet- or blue-flowered cultivars because they lack delphinidin-based anthocyanins. This deficiency is due to the absence of the flavonoid 3',5'-hydroxylase gene (F3'5'H), which encodes the key enzyme for delphinidin biosynthesis. In F3'5'H-transformed chrysanthemums, unpredictable and unstable expression levels have hampered successful production of delphinidin and reduced desired changes in flower color. With the aim of achieving delphinidin production in chrysanthemum petals, we found that anthocyanin biosynthetic gene promoters combined with a translational enhancer increased expression of some F3'5'H genes and accompanying delphinidin-based anthocyanin accumulation in transgenic chrysanthemums. Dramatic accumulation of delphinidin (up to 95%) was achieved by simple overexpression of Campanula F3'5'H controlled by a petal-specific flavanone 3-hydroxylase promoter from chrysanthemum combined with the 5'-untranslated region of the alcohol dehydrogenase gene as a translational enhancer. The flower colors of transgenic lines producing delphinidin-based anthocyanins changed from a red-purple to a purple-violet hue in the Royal Horticultural Society Colour Charts. This result represents a promising step toward molecular breeding of blue chrysanthemums.


Asunto(s)
Antocianinas/biosíntesis , Chrysanthemum/genética , Flores/genética , Ingeniería Genética/métodos , Pigmentación/genética , Regiones no Traducidas 5'/genética , Alcohol Deshidrogenasa/genética , Antocianinas/química , Chrysanthemum/metabolismo , Color , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Elementos de Facilitación Genéticos/genética , Flores/metabolismo , Estructura Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados
20.
BMC Genomics ; 13: 292, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747974

RESUMEN

BACKGROUND: Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. RESULTS: We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. CONCLUSIONS: We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.


Asunto(s)
Dianthus/genética , Perfilación de la Expresión Génica , Análisis de Secuencia de ADN , Regiones no Traducidas 3' , Antocianinas/biosíntesis , Antocianinas/genética , Arabidopsis/genética , Carotenoides/genética , Carotenoides/metabolismo , Clorofila/genética , Clorofila/metabolismo , Mapeo Contig , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Genes de Plantas , Repeticiones de Microsatélite , ARN de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...