Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(11): eadk6308, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478617

RESUMEN

Geometrical frustration endows magnets with degenerate ground states, resulting in exotic spin structures and quantum phenomena. Such magnets, called quantum magnets, can display non-coplanar spin textures and be a viable platform for the topological Hall effect driven by "emergent field." However, most quantum magnets are insulators, making it challenging to electrically detect associated fluctuations and excitations. Here, we probe magnetic transitions in the spin ice insulator Dy2Ti2O7, a prototypical quantum magnet, as emergent magnetotransport phenomena at the heterointerface with the nonmagnetic metal Bi2Rh2O7. Angle-dependent longitudinal resistivity exhibits peaks at the magnetic phase boundaries of spin ice due to domain boundary scattering. In addition, the anomalous Hall resistivity undergoes a sign change with the magnetic transition in Dy2Ti2O7, reflecting the inversion of the emergent field. These findings, on the basis of epitaxial techniques, connect the fundamental research on insulating quantum magnets to their potential electronic applications, possibly leading to transformative innovations in quantum technologies.

2.
Genome Res ; 34(1): 47-56, 2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38290979

RESUMEN

Oxidative stress-induced DNA damage and its repair systems are related to cancer etiology; however, the molecular basis triggering tumorigenesis is not well understood. Here, we aimed to explore the causal relationship between oxidative stress, somatic mutations in pre-tumor-initiated normal tissues, and tumor incidence in the small intestines of MUTYH-proficient and MUTYH-deficient mice. MUTYH is a base excision repair enzyme associated with human colorectal cancer. Mice were administered different concentrations of potassium bromate (KBrO3; an oxidizing agent)-containing water for 4 wk for mutagenesis studies or 16 wk for tumorigenesis studies. All Mutyh -/- mice treated with >0.1% KBrO3 developed multiple tumors, and the average tumor number increased dose dependently. Somatic mutation analysis of Mutyh -/-/rpsL transgenic mice revealed that G:C  > T:A transversion was the only mutation type correlated positively with KBrO3 dose and tumor incidence. These mutations preferentially occurred at 5'G in GG and GAA sequences in rpsL This characteristic mutation pattern was also observed in the genomic region of Mutyh -/- tumors using whole-exome sequencing. It closely corresponded to signature 18 and SBS36, typically caused by 8-oxo-guanine (8-oxoG). 8-oxoG-induced mutations were sequence context dependent, yielding a biased amino acid change leading to missense and stop-gain mutations. These mutations frequently occurred in critical amino acid codons of known cancer drivers, Apc or Ctnnb1, known for activating Wnt signal pathway. Our results indicate that oxidative stress contributes to increased tumor incidence by elevating the likelihood of gaining driver mutations by increasing 8-oxoG-mediated mutagenesis, particularly under MUTYH-deficient conditions.


Asunto(s)
Guanina/análogos & derivados , Neoplasias , Estrés Oxidativo , Humanos , Ratones , Animales , Estrés Oxidativo/genética , Mutagénesis , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Mutación , Ratones Transgénicos , Neoplasias/genética , Aminoácidos/genética , Reparación del ADN
3.
Cell Death Discov ; 8(1): 150, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365611

RESUMEN

Oxidative stress plays a pivotal role in the differentiation and proliferation of cells and programmed cell death. However, studies on the role of oxidative stress in differentiation have mainly employed the detection of reactive oxygen species (ROS) during differentiation or generated by ROS inducers. Therefore, it is difficult to clarify the significance of endogenous ROS production in the differentiation of human cells. We developed a system to control the intracellular level of ROS in the initial stage of differentiation in human iPS cells. By introducing a specific substitution (I69E) into the SDHC protein, a component of the mitochondrial respiratory chain complex, the endogenous ROS level increased. This caused impaired endoderm differentiation of iPS cells, and this impairment was reversed by overproduction of mitochondrial-targeted catalase, an anti-oxidant enzyme. Expression of tumor-related FOXC1 transcription factor increased transiently as early as 4 h after ROS-overproduction in the initial stage of differentiation. Knockdown of FOXC1 markedly improved impaired endoderm differentiation, suggesting that endogenous ROS production in the early differentiation state suppresses endoderm differentiation via transient FOXC1 expression.

4.
Sci Adv ; 7(52): eabl5381, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-34936456

RESUMEN

While anomalous Hall effect (AHE) has been extensively studied in the past, efforts for realizing large Hall response have been mainly limited within intrinsic mechanism. Lately, however, a theory of extrinsic mechanism has predicted that magnetic scattering by spin cluster can induce large AHE even above magnetic ordering temperature, particularly in magnetic semiconductors with low carrier density, strong exchange coupling, and finite spin chirality. Here, we find out a new magnetic semiconductor EuAs, where Eu2+ ions with large magnetic moments form distorted triangular lattice. In addition to colossal magnetoresistance, EuAs exhibits large AHE with an anomalous Hall angle of 0.13 at temperatures far above antiferromagnetic ordering. As also demonstrated by model calculations, observed AHE can be explained by the spin cluster scattering in a hopping regime. Our findings shed light on magnetic semiconductors hosting topological spin textures, developing a field targeting diluted carriers strongly coupled to noncoplanar spin structures.

5.
Genes Environ ; 43(1): 27, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34225823

RESUMEN

BACKGROUND: Base pair mismatches in genomic DNA can result in mutagenesis, and consequently in tumorigenesis. To investigate how mismatch repair deficiency increases mutagenicity under oxidative stress, we examined the type and frequency of mutations arising in the mucosa of the small intestine of mice carrying a reporter gene encoding guanine phosphoribosyltransferase (gpt) and in which the Msh2 gene, which encodes a component of the mismatch repair system, was either intact (Msh2+/+::gpt/0; Msh2-bearing) or homozygously knockout (KO) (Msh2-/-::gpt/0; Msh2-KO). RESULTS: Gpt mutant frequency in the small intestine of Msh2-KO mice was about 10 times that in Msh2-bearing mice. Mutant frequency in the Msh2-KO mice was not further enhanced by administration of potassium bromate, an oxidative stress inducer, in the drinking water at a dose of 1.5 g/L for 28 days. Mutation analysis showed that the characteristic mutation in the small intestine of the Msh2-KO mice was G-to-A transition, irrespective of whether potassium bromate was administered. Furthermore, administration of potassium bromate induced mutations at specific sites in gpt in the Msh2-KO mice: G-to-A transition was frequently induced at two known sites of spontaneous mutation (nucleotides 110 and 115, CpG sites) and at nucleotides 92 and 113 (3'-side of 5'-GpG-3'), and these sites were confirmed to be mutation hotspots in potassium bromate-administered Msh2-KO mice. Administration of potassium bromate also induced characteristic mutations, mainly single-base deletion and insertion of an adenine residue, in sequences of three to five adenine nucleotides (A-runs) in Msh2-KO mice, and elevated the overall proportion of single-base deletions plus insertions in Msh2-KO mice. CONCLUSIONS: Our previous study revealed that administration of potassium bromate enhanced tumorigenesis in the small intestine of Msh2-KO mice and induced G-to-A transition in the Ctnnb1 gene. Based on our present and previous observations, we propose that oxidative stress under conditions of mismatch repair deficiency accelerates the induction of single-adenine deletions at specific sites in oncogenes, which enhances tumorigenesis in a synergistic manner with G-to-A transition in other oncogenes (e.g., Ctnnb1).

6.
Artículo en Inglés | MEDLINE | ID: mdl-32247553

RESUMEN

Tumorigenesis induced by oxidative stress is thought to be initiated by mutagenesis, but via an indirect mechanism. The dose-response curves for agents that act by this route usually show a threshold, for unknown reasons. To gain insight into these phenomena, we have analyzed the dose response for mutagenesis induced by the oral administration of potassium bromate, a typical oxidative-stress-generating agent, to gpt delta mice. The agent was given orally for 90 d to either Nrf2+ or Nrf2-knockout (KO) mice and mutants induced in the small intestine were analyzed. In Nrf2+mice, the mutant frequency was significantly greater than in the vehicle controls at a dose of 0.6 g/L but not at 0.2 g/L, indicating that a practical threshold for mutagenesis lies between these doses. At 0.6 g/L, the frequencies of G-to-T transversions (landmark mutations for oxidative stress) and G-to-A transitions were significantly elevated. In Nrf2-KO mice, too, the total mutant frequency was increased only at 0.6 g/L. G-to-T transversions are likely to have driven tumorigenesis in the small intestine. A site-specific G-to-T transversion at guanine (nucleotide 406) in a 5'-TGAA-3' sequence in gpt, and our primer extension reaction showed that formation of the oxidative DNA base modification 8-oxo-deoxyguanosine (8-oxo-dG) at nucleotide 406 was significantly increased at doses of 0.6 and 2 g/L in the gpt delta mice. In the Apc oncogene, guanine residues in the same or similar sequences (TGAA or AGAA) are highly substituted by thymine (G-to-T transversions) in potassium bromate-induced tumors. We propose that formation of 8-oxo-dG in the T(A)GAA sequence is an initiating event in tumor formation in the small intestine in response to oxidative stress.


Asunto(s)
Bromatos/toxicidad , Mutagénesis/genética , Estrés Oxidativo/genética , Pentosiltransferasa/genética , 8-Hidroxi-2'-Desoxicoguanosina/genética , Administración Oral , Animales , Bromatos/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , ADN/efectos de los fármacos , ADN/genética , Relación Dosis-Respuesta a Droga , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Ratones , Ratones Noqueados , Mutagénesis/efectos de los fármacos , Mutación , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos
8.
Genes Genet Syst ; 94(1): 13-22, 2019 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-30381610

RESUMEN

Germline mutations are the origin of genetic variation and are widely considered to be the driving force of genome evolution. The rates and spectra of de novo mutations (DNMs) directly affect evolutionary speed and direction and thereby establish species-specific genomic futures in the long term. This has resulted in a keen interest in understanding the origin of germline mutations in mammals. Accumulating evidence from next-generation sequencing and family-based analysis indicates that the frequency of human DNMs varies according to sex, age and local genomic context. Thus, it is likely that there are multiple causes and drivers of mutagenesis, including spontaneous DNA lesions, DNA repair status and DNA polymerase errors. In this review, recent studies of human and mouse germline DNMs are discussed, and the rates and spectra of spontaneous germline DNMs in the mouse mutator lines Pold1exo/exo and TOY-KO (Mth1-/-/Ogg1-/-/Mutyh-/- triple knockout) are summarized in the context of endogenous causes and mechanisms.


Asunto(s)
Mutación de Línea Germinal , Mutagénesis , Animales , Humanos , Ratones , Acumulación de Mutaciones , Tasa de Mutación
9.
Evol Lett ; 1(5): 232-244, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30283652

RESUMEN

Wolbachia is a maternally inherited ubiquitous endosymbiotic bacterium of arthropods that displays a diverse repertoire of host reproductive manipulations. For the first time, we demonstrate that Wolbachia manipulates sex chromosome inheritance in a sexually reproducing insect. Eurema mandarina butterfly females on Tanegashima Island, Japan, are infected with the wFem Wolbachia strain and produce all-female offspring, while antibiotic treatment results in male offspring. Fluorescence in situ hybridization (FISH) revealed that wFem-positive and wFem-negative females have Z0 and WZ sex chromosome sets, respectively, demonstrating the predicted absence of the W chromosome in wFem-infected lineages. Genomic quantitative polymerase chain reaction (qPCR) analysis showed that wFem-positive females lay only Z0 eggs that carry a paternal Z, whereas females from lineages that are naturally wFem-negative lay both WZ and ZZ eggs. In contrast, antibiotic treatment of adult wFem females resulted in the production of Z0 and ZZ eggs, suggesting that this Wolbachia strain can disrupt the maternal inheritance of Z chromosomes. Moreover, most male offspring produced by antibiotic-treated wFem females had a ZZ karyotype, implying reduced survival of Z0 individuals in the absence of feminizing effects of Wolbachia. Antibiotic treatment of wFem-infected larvae induced male-specific splicing of the doublesex (dsx) gene transcript, causing an intersex phenotype. Thus, the absence of the female-determining W chromosome in Z0 individuals is functionally compensated by Wolbachia-mediated conversion of sex determination. We discuss how Wolbachia may manipulate the host chromosome inheritance and that Wolbachia may have acquired this coordinated dual mode of reproductive manipulation first by the evolution of female-determining function and then cytoplasmically induced disruption of sex chromosome inheritance.

10.
Genome Res ; 25(8): 1125-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26129709

RESUMEN

The germline mutation rate is an important parameter that affects the amount of genetic variation and the rate of evolution. However, neither the rate of germline mutations in laboratory mice nor the biological significance of the mutation rate in mammalian populations is clear. Here we studied genome-wide mutation rates and the long-term effects of mutation accumulation on phenotype in more than 20 generations of wild-type C57BL/6 mice and mutator mice, which have high DNA replication error rates. We estimated the base-substitution mutation rate to be 5.4 × 10(-9) (95% confidence interval = 4.6 × 10(-9)-6.5 × 10(-9)) per nucleotide per generation in C57BL/6 laboratory mice, about half the rate reported in humans. The mutation rate in mutator mice was 17 times that in wild-type mice. Abnormal phenotypes were 4.1-fold more frequent in the mutator lines than in the wild-type lines. After several generations, the mutator mice reproduced at substantially lower rates than the controls, exhibiting low pregnancy rates, lower survival rates, and smaller litter sizes, and many of the breeding lines died out. These results provide fundamental information about mouse genetics and reveal the impact of germline mutation rates on phenotypes in a mammalian population.


Asunto(s)
Animales de Laboratorio/genética , Mutación de Línea Germinal , Ratones/genética , Animales , Animales de Laboratorio/fisiología , Evolución Molecular , Femenino , Genoma , Tamaño de la Camada , Ratones/clasificación , Ratones/fisiología , Tasa de Mutación , Fenotipo , Embarazo , Índice de Embarazo , Selección Genética
12.
PLoS One ; 10(5): e0126710, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25962134

RESUMEN

ΔFosB is a stable transcription factor which accumulates in the nucleus accumbens (NAc), a key part of the brain's reward circuitry, in response to chronic exposure to cocaine or other drugs of abuse. While ΔFosB is known to heterodimerize with a Jun family member to form an active transcription factor complex, there has not to date been an open-ended exploration of other possible binding partners for ΔFosB in the brain. Here, by use of yeast two-hybrid assays, we identify PSMC5-also known as SUG1, an ATPase-containing subunit of the 19S proteasomal complex-as a novel interacting protein with ΔFosB. We verify such interactions between endogenous ΔFosB and PSMC5 in the NAc and demonstrate that both proteins also form complexes with other chromatin regulatory proteins associated with gene activation. We go on to show that chronic cocaine increases nuclear, but not cytoplasmic, levels of PSMC5 in the NAc and that overexpression of PSMC5 in this brain region promotes the locomotor responses to cocaine. Together, these findings describe a novel mechanism that contributes to the actions of ΔFosB and, for the first time, implicates PSMC5 in cocaine-induced molecular and behavioral plasticity.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Núcleo Accumbens/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Cocaína/administración & dosificación , ADN Helicasas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Núcleo Accumbens/fisiopatología , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Factores de Transcripción p300-CBP/metabolismo
13.
Sci Rep ; 4: 4689, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24732879

RESUMEN

Spontaneous germline mutations generate genetic diversity in populations of sexually reproductive organisms, and are thus regarded as a driving force of evolution. However, the cause and mechanism remain unclear. 8-oxoguanine (8-oxoG) is a candidate molecule that causes germline mutations, because it makes DNA more prone to mutation and is constantly generated by reactive oxygen species in vivo. We show here that endogenous 8-oxoG caused de novo spontaneous and heritable G to T mutations in mice, which occurred at different stages in the germ cell lineage and were distributed throughout the chromosomes. Using exome analyses covering 40.9 Mb of mouse transcribed regions, we found increased frequencies of G to T mutations at a rate of 2 × 10(-7) mutations/base/generation in offspring of Mth1/Ogg1/Mutyh triple knockout (TOY-KO) mice, which accumulate 8-oxoG in the nuclear DNA of gonadal cells. The roles of MTH1, OGG1, and MUTYH are specific for the prevention of 8-oxoG-induced mutation, and 99% of the mutations observed in TOY-KO mice were G to T transversions caused by 8-oxoG; therefore, we concluded that 8-oxoG is a causative molecule for spontaneous and inheritable mutations of the germ lineage cells.


Asunto(s)
ADN Glicosilasas/genética , Mutación de Línea Germinal/efectos de los fármacos , Guanina/análogos & derivados , Monoéster Fosfórico Hidrolasas/genética , Animales , Secuencia de Bases , Linaje de la Célula , Reparación del ADN , Variación Genética , Guanina/farmacología , Hidrocefalia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Tasa de Mutación , Análisis de Secuencia de ADN
14.
J Radiat Res ; 54(3): 453-66, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23297316

RESUMEN

Changes in the thymic microenvironment lead to radiation-induced thymic lymphomagenesis, but the phenomena are not fully understood. Here we show that radiation-induced chromosomal instability and bystander effects occur in thymocytes and are involved in lymphomagenesis in C57BL/6 mice that have been irradiated four times with 1.8-Gy γ-rays. Reactive oxygen species (ROS) were generated in descendants of irradiated thymocytes during recovery from radiation-induced thymic atrophy. Concomitantly, descendants of irradiated thymocytes manifested DNA lesions as revealed by γ-H2AX foci, chromosomal instability, aneuploidy with trisomy 15 and bystander effects on chromosomal aberration induction in co-cultured ROS-sensitive mutant cells, suggesting that the delayed generation of ROS is a primary cause of these phenomena. Abolishing the bystander effect of post-irradiation thymocytes by superoxide dismutase and catalase supports ROS involvement. Chromosomal instability in thymocytes resulted in the generation of abnormal cell clones bearing trisomy 15 and aberrant karyotypes in the thymus. The emergence of thymic lymphomas from the thymocyte population containing abnormal cell clones indicated that clones with trisomy 15 and altered karyotypes were prelymphoma cells with the potential to develop into thymic lymphomas. The oncogene Notch1 was rearranged after the prelymphoma cells were established. Thus, delayed nontargeted radiation effects drive thymic lymphomagenesis through the induction of characteristic changes in intrathymic immature T cells and the generation of prelymphoma cells.


Asunto(s)
Efecto Espectador/efectos de la radiación , Carcinogénesis/efectos de la radiación , Inestabilidad Cromosómica/efectos de la radiación , Linfoma/metabolismo , Traumatismos por Radiación/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Timo/metabolismo , Animales , Carcinogénesis/genética , Células Cultivadas , Inestabilidad Cromosómica/genética , Fraccionamiento de la Dosis de Radiación , Relación Dosis-Respuesta en la Radiación , Femenino , Linfoma/patología , Ratones , Ratones Endogámicos C57BL , Lesiones Precancerosas , Dosis de Radiación , Traumatismos por Radiación/genética , Traumatismos por Radiación/patología , Timocitos/metabolismo , Timocitos/efectos de la radiación , Neoplasias del Timo/genética , Neoplasias del Timo/patología
15.
Int J Biol Sci ; 10(1): 73-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24391453

RESUMEN

We have previously established an experimental system for oxidative DNA damage-induced tumorigenesis in the small intestine of mice. To elucidate the roles of mismatch repair genes in the tumor suppression, we performed oxidative DNA damage-induced tumorigenesis experiments using Msh2-deficient mice. Oral administration of 0.2% Potassium Bromate, KBrO3, effectively induced epithelial tumors in the small intestines of Msh2-deficient mice. We observed a 22.5-fold increase in tumor formation in the small intestines of Msh2-deficient mice compared with the wild type mice. These results indicate that mismatch repair is involved in the suppression of oxidative stress-induced intestinal tumorigenesis in mice. A mutation analysis of the Ctnnb1 gene of the tumors revealed predominant occurrences of G:C to A:T transitions. The TUNEL analysis showed a decreased number of TUNEL-positive cells in the crypts of small intestines from the Msh2-deficient mice compared with the wild type mice after treatment of KBrO3. These results suggest that the mismatch repair system may simultaneously function in both avoiding mutagenesis and inducing cell death to suppress the tumorigenesis induced by oxidative stress in the small intestine of mice.


Asunto(s)
Disparidad de Par Base , Carcinogénesis , Reparación del ADN/genética , Neoplasias Intestinales/genética , Estrés Oxidativo , Animales , Apoptosis , Secuencia de Bases , Bromatos/toxicidad , Cartilla de ADN , Etiquetado Corte-Fin in Situ , Neoplasias Intestinales/inducido químicamente , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Ratones , Proteína 2 Homóloga a MutS/genética , Mutación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta Catenina/genética
17.
Nucleic Acids Res ; 38(9): 2891-903, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20081199

RESUMEN

Mammalian inosine triphosphatase encoded by ITPA gene hydrolyzes ITP and dITP to monophosphates, avoiding their deleterious effects. Itpa(-) mice exhibited perinatal lethality, and significantly higher levels of inosine in cellular RNA and deoxyinosine in nuclear DNA were detected in Itpa(-) embryos than in wild-type embryos. Therefore, we examined the effects of ITPA deficiency on mouse embryonic fibroblasts (MEFs). Itpa(-) primary MEFs lacking ITP-hydrolyzing activity exhibited a prolonged doubling time, increased chromosome abnormalities and accumulation of single-strand breaks in nuclear DNA, compared with primary MEFs prepared from wild-type embryos. However, immortalized Itpa(-) MEFs had neither of these phenotypes and had a significantly higher ITP/IDP-hydrolyzing activity than Itpa(-) embryos or primary MEFs. Mammalian NUDT16 proteins exhibit strong dIDP/IDP-hydrolyzing activity and similarly low levels of Nudt16 mRNA and protein were detected in primary MEFs derived from both wild-type and Itpa(-) embryos. However, immortalized Itpa(-) MEFs expressed significantly higher levels of Nudt16 than the wild type. Moreover, introduction of silencing RNAs against Nudt16 into immortalized Itpa(-) MEFs reproduced ITPA-deficient phenotypes. We thus conclude that NUDT16 and ITPA play a dual protective role for eliminating dIDP/IDP and dITP/ITP from nucleotide pools in mammals.


Asunto(s)
Ácido Anhídrido Hidrolasas/fisiología , Inestabilidad Cromosómica , Inosina Difosfato/metabolismo , Inosina Trifosfato/metabolismo , Pirofosfatasas/fisiología , Ácido Anhídrido Hidrolasas/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Nucleótidos de Inosina/metabolismo , Inosina Trifosfato/análogos & derivados , Ratones , Ratones Noqueados , Fenotipo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Inosina Trifosfatasa
18.
PLoS One ; 4(9): e7247, 2009 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-19789628

RESUMEN

It has been shown that molecular hydrogen (H(2)) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H(2)-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H(2) showed that H(2) as low as 0.08 ppm had almost the same effect as saturated H(2) water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H(2)-containing water, whereas production of superoxide (O(2)*(-)) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H(2) in drinking water can reduce oxidative stress in the brain. Thus, drinking H(2)-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/análogos & derivados , Dopamina/metabolismo , Hidrógeno/química , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Agua/metabolismo , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Animales , Modelos Animales de Enfermedad , Peroxidación de Lípido , Ratones , Enfermedades Neurodegenerativas/metabolismo , Estrés Oxidativo , Oxígeno/química , Riesgo , Abastecimiento de Agua
19.
Methods Mol Biol ; 554: 199-212, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19513676

RESUMEN

8-Oxoguanine (8-oxoG), an oxidized form of guanine, is one of the major mutagenic lesions generated under oxidative stress. Oxidative damage in mitochondrial DNA has been implicated as a causative factor for a wide variety of degenerative diseases as well as for cancer during aging. We established a quantitative method for in situ detection of 8-oxoG in mitochondrial DNA in a single-cell level using a monoclonal antibody. Specific detection of 8-oxoG in mitochondrial DNA was confirmed by pre-treatment of samples with DNase I or MutM, the latter excising 8-oxoG opposite C in DNA. We then analyzed 8-oxoG dynamics in mitochondrial DNA of the wild-type and 8-oxoG DNA glycosylase (OGG1)-deficient mouse cells after exposure to hydrogen peroxide. Intensities for the 8-oxoG immunoreactivity in mitochondrial DNA were increased immediately after the exposure to hydrogen peroxide in both types of cells. The increased intensities returned to basal levels within a few hours only in wild-type cells, but not in OGG1-deficient cells which exhibited the increased intensities even 24 h after the exposure. These results indicate that OGG1 is a major enzyme for excision repair of 8-oxoG in mitochondrial DNA in mouse cells, and that our method described here is appropriate to study 8-oxoG dynamics in mitochondrial DNA.


Asunto(s)
ADN Mitocondrial/química , Técnica del Anticuerpo Fluorescente/métodos , Guanina/análogos & derivados , Guanina/análisis , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , ADN Glicosilasas/fisiología , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Guanina/química , Peróxido de Hidrógeno/farmacología , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Células 3T3 NIH , Oxidantes/farmacología , Oxidación-Reducción
20.
Methods Mol Biol ; 554: 251-64, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19513679

RESUMEN

Oxidative base lesions, such as 8-oxoguanine, accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known whether only oxidative lesion accumulated in mitochondrial DNA is involved in such cell death. By introducing human cDNA encoding a nuclear form of 8-oxoG DNA glycosylase (hOGG1-1a) into immortalized mouse embryo fibroblasts lacking Ogg1 gene, we established a cell line which selectively accumulates 8-oxoguanine in mitochondrial DNA under oxidative stress. Selective accumulation of 8-oxoguanine in mitochondrial DNA in this cell line causes degradation of mitochondrial DNA followed by ATP depletion, mitochondrial membrane permeability transition, and Ca(2+) efflux, which in turn activates calpains to execute cell death. Knockdown of MUTYH which excises adenine opposite 8-oxoG in DNA prevents degradation of mitochondrial DNA and activation of calpain, thus suppressing the cell death induced by menadione.


Asunto(s)
Núcleo Celular/genética , Daño del ADN , ADN Glicosilasas/fisiología , Reparación del ADN , ADN Mitocondrial/genética , Adenosina Trifosfato/metabolismo , Animales , Southern Blotting , Calcio/metabolismo , Calpaína/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Células Cultivadas , ADN Mitocondrial/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA