Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Int J Med Mushrooms ; 26(6): 13-23, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801085

RESUMEN

Brazil-grown outdoor-cultivated Agaricus brasiliensis KA21 fruiting body (KA21) significantly increases the production of serum anti-beta-glucan antibody. Therefore, KA21 ingestion may be useful for the prevention and alleviation of fungal infections. This study aimed to determine the effects of KA21 in fungal infections in animals. KA21 was administered to nine dogs infected with Malassezia. Notably, the anti-beta-glucan antibody titer remained unchanged or tended to decrease in the oral steroid arm, whereas in the non-steroid arm, antibody titer increased in almost all animals after KA21 ingestion. Dogs showing improved clinical symptoms exhibited increased anti-beta-glucan antibody titers. The results of this study suggest that KA21 ingestion may alleviate the symptoms of Malassezia and other fungal infections and that continuous ingestion may help prolong recurrence-free intervals. Additionally, the ingestion of KA21 during oral steroid dosage reduction or discontinuation may enable smoother steroid withdrawal.


Asunto(s)
Agaricus , Enfermedades de los Perros , Cuerpos Fructíferos de los Hongos , Malassezia , Animales , Perros , Agaricus/química , Cuerpos Fructíferos de los Hongos/química , Malassezia/efectos de los fármacos , Enfermedades de los Perros/microbiología , Enfermedades de los Perros/tratamiento farmacológico , Dermatomicosis/veterinaria , Dermatomicosis/prevención & control , Dermatomicosis/tratamiento farmacológico , Dermatomicosis/microbiología , beta-Glucanos/administración & dosificación , beta-Glucanos/farmacología , Masculino , Brasil , Dermatitis/tratamiento farmacológico , Dermatitis/veterinaria , Dermatitis/microbiología , Dermatitis/prevención & control , Femenino , Anticuerpos Antifúngicos/sangre
2.
Carbohydr Res ; 536: 109041, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38262208

RESUMEN

ß-Glucan is a homopolymer with a backbone of ß-1,3-linked glucose residues. The solubility and biological activity of ß-glucan can be influenced by the length of the backbone and the length/interval of the ß-1,6 branches. Dectin-1 is crucial in innate immunity through its binding to exogenous ß-glucans. However, there are few quantitative binding affinities available and there is no comprehensive comparative analysis of the binding of Dectin-1 to insoluble ß-glucans. Here, we have developed a simple binding assay for the interaction between Dectin-1 lectin domain (Dectin-1 CTLD) and insoluble ß-glucans. We utilized the paramylon particle as a model of insoluble ß-glucans. Dectin-1 CTLD bound to paramylon (particle size 3.1 µm) was separated from unbound Dectin-1 CTLD by centrifugation using a membrane filter (pore size 0.2 µm). The protein in the filtrate was quantified by SDS-PAGE and densitometry. The amount decreased in proportion to the amount of paramylon in the mixture. A control experiment using the Dectin-1 CTLD inactive mutant W221A showed that the mutant passes through the filter without binding paramylon. These results are evidence of site-specific binding of Dectin-1 CTLD to paramylon and demonstrate that the separation of paramylon-bound/unbound Dectin-1 CTLD is achievable through centrifugation using a filter. The assay was extended to other insoluble ß-glucans including curdlan. Additionally, it can be utilized in competitive inhibition experiments with soluble short-chain ß-glucans such as laminarin. The assay system allows for quantitative comparison of the affinities between insoluble and soluble ß-glucans and Dectin-1 CTLD, and should be useful because of its low-tech convenience.


Asunto(s)
beta-Glucanos , beta-Glucanos/química , Lectinas Tipo C/genética , Lectinas Tipo C/química , Inmunidad Innata
3.
Carbohydr Res ; 529: 108849, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37216698

RESUMEN

OL-2 is a water-soluble ß-glucan produced by Omphalia lapidescens. This versatile glucan has potential applications in various industries, including food, cosmetics, and pharmaceuticals. In addition, OL-2 is known for its promising applications as a biomaterial and drug, owing to its reported antitumor and antiseptic properties. Although the biological activities of ß-glucans vary depending on their primary structure, holistic clarification of OL-2 via solution NMR spectroscopy to ascertain its complete and unambiguous structure has not yet been achieved. In this study, a chain of solution NMR techniques, such as correlation spectroscopy, total correlation spectroscopy (TOCSY), nuclear Overhauser effect and exchange spectroscopy, 13C-edited heteronuclear single quantum coherence (HSQC), HSQC-TOCSY, heteronuclear multiple bond correlation, and heteronuclear 2-bond correlation pulse sequences were used to unambiguously assign all 1H and 13C atoms in OL-2. Based on our investigation, OL-2 consists of a 1,3-ß-glucan backbone chain decorated with a single 6-branched ß-glucosyl side unit on every fourth residue.


Asunto(s)
Agaricales , beta-Glucanos , beta-Glucanos/química , Agaricales/química , Agaricales/clasificación , Espectroscopía de Resonancia Magnética
4.
Int J Med Mushrooms ; 25(3): 1-19, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37017658

RESUMEN

ß-glucans are polysaccharides that activate innate immunity. We herein investigated whether P-glucans promote the immunological effects of antibody drugs against malignant tumor cells using human peripheral blood mononuclear cells (PBMCs). Rituximab bound to CD20-specific lymphoma and exhibited cytotoxic activity in the presence of human mononuclear cells, but not neutrophils. The addition of Sparassis crispa (cauliflower mushroom)-derived ß-glucan (SCG) and granulocyte macrophage colony-stimulating factor (GM-CSF) to co-cultures of PBMCs and Raji lymphoma cells further promoted antibody-dependent cell-mediated cytotoxicity (ADCC). The GM-CSF treatment increased ß-glucan receptor expression on adherent cells in PBMCs. A co-stimulation with GM-CSF and SCG of PBMCs induced an increase in the number of spreading cells and the activation of natural killer (NK) cells. The enhancement in ADCC was abolished by the removal of NK cells, indicating that SCG and GM-CSF increased ADCC against lymphoma by activating ß-glucan receptor-expressing cells in PBMCs and enhancing NK cell activity. The synergistic mechanisms of action of mushroom-derived ß-glucans and biopharmaceuticals, including recombinant cytokines and antibodies, in the treatment of malignant tumor cells provide important insights into the clinical efficacy of ß-glucans from mushrooms.


Asunto(s)
Agaricales , Linfoma de Células B , Linfoma , beta-Glucanos , Humanos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , beta-Glucanos/farmacología , Agaricales/metabolismo , Leucocitos Mononucleares , Células Asesinas Naturales
5.
Nat Commun ; 14(1): 1493, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932082

RESUMEN

Dectin-1 (gene Clec7a), a receptor for ß-glucans, plays important roles in the host defense against fungi and immune homeostasis of the intestine. Although this molecule is also suggested to be involved in the regulation of tumorigenesis, the role in intestinal tumor development remains to be elucidated. In this study, we find that azoxymethane-dextran-sodium-sulfate-induced and ApcMin-induced intestinal tumorigenesis are suppressed in Clec7a-/- mice independently from commensal microbiota. Dectin-1 is preferentially expressed on myeloid-derived suppressor cells (MDSCs). In the Clec7a-/- mouse colon, the proportion of MDSCs and MDSC-derived prostaglandin E2 (PGE2) levels are reduced, while the expression of IL-22 binding protein (IL-22BP; gene Il22ra2) is upregulated. Dectin-1 signaling induces PGE2-synthesizing enzymes and PGE2 suppresses Il22ra2 expression in vitro and in vivo. Administration of short chain ß-glucan laminarin, an antagonist of Dectin-1, suppresses the development of mouse colorectal tumors. Furthermore, in patients with colorectal cancer (CRC), the expression of CLEC7A is also observed in MDSCs and correlated with the death rate and tumor severity. Dectin-1 signaling upregulates PGE2-synthesizing enzyme expression and PGE2 suppresses IL22RA2 expression in human CRC-infiltrating cells. These observations indicate a role of the Dectin-1-PGE2-IL-22BP axis in regulating intestinal tumorigenesis, suggesting Dectin-1 as a potential target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales , Lectinas Tipo C , Células Supresoras de Origen Mieloide , Animales , Humanos , Ratones , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Neoplasias Colorrectales/patología , Dinoprostona/metabolismo , Lectinas Tipo C/genética , Células Supresoras de Origen Mieloide/metabolismo , Interleucina-22
6.
Pediatr Rheumatol Online J ; 20(1): 119, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550471

RESUMEN

BACKGROUND: Kawasaki disease (KD) is usually treated with high-dose intravenous immunoglobulin (IVIg) as severe infectious and other diseases. Due to issues that are associated with immunoglobulin preparation, such as the risk of possible contamination by infectious agents and limited blood banking resources, recombinant immunoglobulins are required. We developed a novel recombinant antibody drug candidate, "VasSF," based on the therapeutic effects it exerted on a mouse spontaneous crescentic glomerulonephritis model (SCG/Kj). Apolipoprotein A-2 (ApoA2) has been identified as one of VasSF's target molecules. METHODS: Here, we tested the potential of anti-apolipoprotein A-2 antibodies (anti-ApoA2) as a new therapeutic drug against KD by examining its effect on a mouse model, in which KD was induced via Candida albicans water-soluble fraction (CAWS). CAWS (2 mg/mouse) was injected intraperitoneally into C57BL/6NCrSlc mice for five consecutive days. The incidence and histological severity of vasculitis in CAWS-induced coronary arteritis in mice administered anti-ApoA2 was examined. The following experimental groups were tested: solvent (only PBS (-) injection); anti-ApoA2 antibodies at dosages of 0.05 mg, 0.1 mg, and 0.5 mg/kg/day; human IgG at 0.1 mg/kg/day. RESULTS: The group treated with anti-ApoA2 0.5 mg/kg/day showed a lower incidence of panvasculitis induced by CAWS, less inflammation of the coronary arteries and aortic roots, and lower levels of serum IL-6, M-CSF, and MIP-1α and 32 cytokines/chemokines compared with those in the solvent group. CONCLUSIONS: The anti-ApoA2 treatment suppressed the development of coronary arteritis in an animal KD model and anti-ApoA2 shows potential as an effective therapeutic candidate for the treatment of KD vasculitis. The use of specific antibodies that display higher vasculitis-suppressing effects, such as anti-ApoA2, may attenuate KD as well as other infectious diseases, with less severe adverse side effects than treatment with IVIg.


Asunto(s)
Arteritis , Enfermedad de la Arteria Coronaria , Síndrome Mucocutáneo Linfonodular , Vasculitis , Humanos , Ratones , Animales , Síndrome Mucocutáneo Linfonodular/complicaciones , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , Inmunoglobulinas Intravenosas/uso terapéutico , Ratones Endogámicos C57BL , Vasculitis/etiología , Enfermedad de la Arteria Coronaria/complicaciones , Modelos Animales de Enfermedad , Vasos Coronarios/patología , Arteritis/tratamiento farmacológico , Arteritis/etiología , Solventes/efectos adversos
7.
Biol Pharm Bull ; 45(9): 1394-1397, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35753759

RESUMEN

Euglena gracilis is a microalga that has recently attracted attention because of its bioactivities. Paramylon (PM), a major ß-1,3-glucan, constitutes 70-80% of the cells of the E. gracilis EOD-1 strain. Dectin-1 is a pattern recognition receptor that recognizes ß-glucan. However, it is unclear whether PM binds to dectin-1. In this study, we investigated the reactivity of EOD1PM with dectin-1 by analyzing the binding of soluble murine and human dectin-1-Fc fusion protein (m dectin-1 Fc, h dectin-1 Fc) to EOD1PM using flow cytometry and enzyme-linked immunosorbent assay (ELISA). m Dectin-1 Fc bound to EOD1PM particles when m dectin-1-Fc is added. Furthermore, the binding specificity was examined in a competitive reaction following addition of a soluble antigen. It was found that the binding of m dectin-1-Fc to EOD1PM was not inhibited by the addition of dextran or ovalbumin but by the addition of solubilized EOD1PM or Candida cell wall- solubilized ß-glucan. In addition, the h dectin-1-Fc fusion protein was found to specifically bind to EOD1PM. These results suggest that dectin-1 recognizes and binds to the ß-glucan structure of EOD1PM. Dectin-1 is expressed in leukocytes as a ß-glucan receptor and is involved in the expression of various biological activities; therefore, the dectin-1 pathway may be involved in the biological activity of EOD1PM.


Asunto(s)
Euglena gracilis , beta-Glucanos , Animales , Euglena gracilis/química , Euglena gracilis/metabolismo , Glucanos , Humanos , Lectinas Tipo C , Ratones
8.
Pediatr Int ; 64(1): e15153, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35522644

RESUMEN

BACKGROUND: We investigated the efficacy of sivelestat sodium hydrate (SSH) as a treatment for Kawasaki disease, and its pharmacological action sites, in mice with Candida albicans water-soluble fraction-induced vasculitis. METHODS: Sivelestat sodium hydrate was administered intraperitoneally to Candida albicans water-soluble fraction-induced vasculitis model mice to assess its efficacy in preventing the development of coronary artery lesions based on the degree of inflammatory cell infiltration in the aortic root and coronary arteries (vasculitis score). The pharmacological sites of action were investigated based on changes in neutrophil elastase (NE) and intercellular adhesion molecule 1 (ICAM-1) positive areas, ICAM-1 and tumor necrosis factor-α mRNA expression levels in the upper heart, and the proportion of monocytes in the peripheral blood. RESULTS: The vasculitis score decreased below the lower limit of the 95% confidence interval of untreated mice in 69% of the SSH-treated mice. The NE- and ICAM-1-positive regions, and the mRNA expression of ICAM-1 and tumor necrosis factor-α were lower in the SSH-treated mice than in the untreated mice. The proportion of monocytes in the peripheral blood was higher in the SSH-treated mice than in the untreated mice, whereas monocyte migration to inflammation areas was suppressed in the SSH-treated mice. CONCLUSIONS: Our results showed that SSH might prevent the development of coronary artery lesions and ameliorate disease activity. In addition to its NE-inhibitory effect, SSH sites of action may also include monocytes.


Asunto(s)
Glicina , Síndrome Mucocutáneo Linfonodular , Sulfonamidas , Vasculitis , Animales , Candida albicans , Glicina/análogos & derivados , Glicina/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Ratones , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , ARN Mensajero , Sulfonamidas/farmacología , Factor de Necrosis Tumoral alfa , Vasculitis/inducido químicamente , Vasculitis/tratamiento farmacológico
9.
J Vasc Res ; 59(3): 176-188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34929700

RESUMEN

INTRODUCTION AND OBJECTIVE: Kawasaki disease (KD) is associated with diffuse and systemic vasculitis of unknown aetiology and primarily affects infants and children. Intravenous immunoglobulin (IVIG) treatment reduces the risk of developing coronary aneurysms, but some children have IVIG-resistant KD, which increases their risk of developing coronary artery injury. Here, we investigated the effect of recombinant human soluble thrombomodulin (rTM), which has anticoagulant, anti-inflammatory, and cytoprotective properties on the development of coronary arteritis in a mouse model of vasculitis. METHODS: An animal model of KD-like vasculitis was created by injecting mice with Candida albicans water-soluble fraction (CAWS). This model was used to investigate the mRNA expression of interleukin (IL)-10, tumour necrosis factor alpha (TNF-α), and tissue factor (TF), in addition to histopathology of heart tissues. RESULTS: rTM treatment significantly reduces cardiac vascular endothelium hypertrophy by 34 days after CAWS treatment. In addition, mRNA expression analysis revealed that rTM administration increased cardiac IL-10 expression until day 27, whereas expression of TNF-α was unaffected. Moreover, in the spleen, rTM treatment restores IL-10 and TF expression to normal levels. CONCLUSION: These findings suggest that rTM suppresses CAWS-induced vasculitis by upregulating IL-10. Therefore, rTM may be an effective treatment for KD.


Asunto(s)
Arteritis , Síndrome Mucocutáneo Linfonodular , Trombomodulina , Vasculitis , Animales , Arteritis/tratamiento farmacológico , Arteritis/patología , Candida albicans/metabolismo , Vasos Coronarios/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunoglobulinas Intravenosas , Interleucina-10 , Ratones , Síndrome Mucocutáneo Linfonodular/tratamiento farmacológico , ARN Mensajero , Proteínas Recombinantes/uso terapéutico , Trombomodulina/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Vasculitis/tratamiento farmacológico , Vasculitis/prevención & control
10.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34205910

RESUMEN

To overcome the limitations of the Limulus amebocyte lysate (LAL) assay method for the diagnosis of invasive fungal infection, we applied a reaction system combining recombinant ß-glucan binding proteins and a scanning single-molecule counting (SSMC) method. A novel (1→3)-ß-D-glucan recognition protein (S-BGRP) and a (1→6)-ß-glucanase mutant protein were prepared and tested for the binding of (1→6)-branched (1→3)-ß-D-glucan from fungi. S-BGRP and (1→6)-ß-glucanase mutant proteins reacted with ß-glucan from Candida and Aspergillus spp. Although LAL cross-reacted with plant-derived ß-glucans, the new detection system using the SSMC method showed low sensitivity to plant (1→3)-ß-D-glucan, which significantly improved the appearance of false positives, a recognized problem with the LAL method. Measurement of ß-glucan levels by the SSMC method using recombinant ß-glucan-binding proteins may be useful for the diagnosis of fungal infections. This study shows that this detection system could be a new alternative diagnostic method to the LAL method.


Asunto(s)
Técnicas Biosensibles , Endotoxinas/aislamiento & purificación , Micosis/diagnóstico , beta-Glucanos/aislamiento & purificación , Aspergillus/química , Aspergillus/aislamiento & purificación , Aspergillus/patogenicidad , Candida/química , Candida/aislamiento & purificación , Candida/patogenicidad , Endotoxinas/química , Humanos , Micosis/microbiología , Imagen Individual de Molécula , beta-Glucanos/química
11.
J Immunol ; 206(12): 2819-2827, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34099547

RESUMEN

The etiology and pathology of Kawasaki disease (KD) remain elusive. Cub domain-containing protein 1 (CDCP1), a cell-surface protein that confers poor prognosis of patients with certain solid tumors, was recently identified as one of the most significantly upregulated genes in SARS-CoV-2-infected children who developed systemic vasculitis, a hallmark of KD. However, a potential role of CDCP1 in KD has not previously been explored. In this study, we found that CDCP1 knockout (KO) mice exhibited attenuated coronary and aortic vasculitis and decreased serum Candida albicans water-soluble fraction (CAWS)-specific IgM/IgG2a and IL-6 concentrations compared with wild-type mice in an established model of KD induced by CAWS administration. CDCP1 expression was not detectable in cardiomyocytes, cardio fibroblasts, or coronary endothelium, but constitutive expression of CDCP1 was observed on dendritic cells (DCs) and was upregulated by CAWS stimulation. CAWS-induced IL-6 production was significantly reduced in CDCP1 KO DCs, in association with impaired Syk-MAPK signaling pathway activation. These novel findings suggest that CDCP1 might regulate KD development by modulating IL-6 production from DCs via the Syk-MAPK signaling pathway.


Asunto(s)
Antígenos de Neoplasias/inmunología , Moléculas de Adhesión Celular/inmunología , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Síndrome Mucocutáneo Linfonodular/inmunología , Animales , Moléculas de Adhesión Celular/deficiencia , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
12.
Yakugaku Zasshi ; 141(5): 711-730, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-33952756

RESUMEN

Fungi are eukaryotic microorganisms that show complex life cycles, including both anamorph and teleomorph stages. Beta-1,3-1,6-glucans (BGs) are major cell wall components in fungi. BGs are also found in a soluble form and are secreted by fungal cells. Studies of fungal BGs extensively expanded from 1960 to 1990 due to their applications in cancer immunotherapy. However, progress in this field slowed down due to the low efficacy of such therapies. In the early 21st century, the discovery of C-type lectin receptors significantly enhanced the molecular understanding of innate immunity. Moreover, pathogen-associated molecular patterns (PAMPs) and pattern recognition receptors (PRRs) were also discovered. Soon, dectin-1 was identified as the PRR of BGs, whereas BGs were established as PAMPs. Then, studies on fungal BGs focused on their participation in the development of deep-seated mycoses and on their role as a source of functional foods. Fungal BGs may have numerous and complex linkages, making it difficult to systematize them even at the primary structure level. Moreover, elucidating the structure of BGs is largely hindered by the multiplicity of genes involved in cell wall biosynthesis, including those for BGs, and by fungal diversity. The present review mainly focused on the characteristics of fungal BGs from the viewpoint of structure and immunological activities.


Asunto(s)
Hongos/química , Glucanos/química , Glucanos/farmacología , Inmunidad Innata/efectos de los fármacos , Animales , Antineoplásicos Fitogénicos , Biomarcadores/sangre , Pared Celular/química , Pared Celular/metabolismo , Descubrimiento de Drogas , Alimentos Funcionales , Hongos/citología , Glucanos/aislamiento & purificación , Glucanos/metabolismo , Humanos , Inmunoterapia , Lectinas Tipo C , Ratones , Micosis/diagnóstico , Moléculas de Patrón Molecular Asociado a Patógenos/aislamiento & purificación , Receptores de Reconocimiento de Patrones/aislamiento & purificación , Relación Estructura-Actividad
13.
Int J Med Mushrooms ; 23(4): 1-12, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822503

RESUMEN

ß-1,3-D-glucan (BG) activates innate immunity and enhances immune responses. Fungi, such as mushrooms, produce a relatively large amount of BG, the structure and molecular weight of which varies depending on the species of fungi. This study was conducted to develop a detection probe for quantifying or detecting BG from fungi using BG-binding proteins. The binding properties of a new ß-glucan recognition protein (BGRP) against various BGs were compared. With reference to the amino acid sequences of BGRP in insects, an artificial BGRP (supBGRP) was designed with higher production efficiency using gene recombination technology. SupBGRP was produced in Escherichia coli with high efficiency, and its reactivity with BG from fungi was the highest among the BG-binding proteins examined. SupBGRP exhibited high reactivity with 1,6-branched BG and will be useful for the quantification and detection of fungal BG.


Asunto(s)
Agaricales/química , beta-Glucanos/aislamiento & purificación , beta-Glucanos/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , beta-Glucanos/química
14.
Int J Mol Sci ; 22(4)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33669963

RESUMEN

Because Japanese cedar pollen (JCP) contains beta-1,3-d-glucan (BG), there is concern that its lingering presence in the atmosphere, especially during its scattering period, may cause false positives in the factor-G-based Limulus amebocyte lysate (LAL) assay used to test for deep mycosis (i.e., G-test). Hence, we examined whether the LAL assay would react positively with substances contained in JCP by using the G-test to measure JCP particles and extracts. BG was purified from the JCP extract on a BG-specific affinity column, and the percentage extractability was measured using three different BG-specific quantitative methods. The G-test detected 0.4 pg BG in a single JCP particle and 10 fg from a single particle in the extract. The percentage extractability of JCP-derived BG was not significantly different among the three quantitative methods. As the JCP particles should technically have been removed during serum separation, they should be less likely to be a direct false-positive factor. However, given that the LAL-assay-positive substances in the JCP extract were not distinguishable by the three BG-specific quantitative methods, we conclude that they may cause the background to rise. Therefore, in Japan false positives arising from JCP contamination should be considered when testing patients for deep mycosis.


Asunto(s)
Cryptomeria/inmunología , Micosis/diagnóstico , Polen/inmunología , Reacciones Falso Positivas , Concentración de Iones de Hidrógeno , Lectinas Tipo C/metabolismo , beta-Glucanos/metabolismo
15.
Int J Med Mushrooms ; 23(2): 13-28, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639078

RESUMEN

The edible mushroom Agaricus brasiliensis contains a large amount ß-glucan, which is mainly composed of a ß-1,6-glucan structure. In this study, we investigated the effect of A. brasiliensis strain KA21 on the anti-ß-glucan antibody titer in healthy humans and the role of antibodies as an immunomodulator. Twenty-two healthy volunteers were fed the dried fruiting body of A. brasiliensis (900 or 1500 mg/day) for 12 weeks. The anti-ß-glucan antibody titer in the serum was determined by enzyme-linked immunosorbent assay. Immunoglobulin G (IgG) against ß-glucan was significantly upregulated after intake of A. brasiliensis. Murine experiments demonstrated improvement of anti-ß-glucan antibody production after intraperitoneal injection of Agaricus-derived ß-glucan. To understand the role of antibody against ß-glucan in exclusion of pathogenic fungi, we examined the interaction between HL-60 cells and antibody-treated heat-killed Candida albicans. Flow cytometry analysis indicated the upregulation of Candida-positive HL-60 cells after treatment with human IgG, whereas the competitive assay demonstrated that the main epitope of Candida-reacted IgG was the ß-1,6-glucan structure. Binding between HL-60 and IgG-opsonized C. albicans was suppressed by anti-Fcγ receptor 1 (FcγRI) neutralizing antibody. Finally, using FcγRI-expressed cells with the nuclear factor of activated T-cell reporter assay, we demonstrated that higher titers of anti-ß-glucan IgG can induce stronger Fc receptor-mediated cell activation through the formation of an antibody-ß-glucan complex. In conclusion, oral ingestion of A. brasiliensis KA21 promotes anti-ß-glucan antibody production and may contribute to preventing fungal infection through the activation of immune cells by forming antibody-ß-glucan complexes via an FcγR-dependent pathway.


Asunto(s)
Agaricus , Animales , Formación de Anticuerpos , Glucanos , Voluntarios Sanos , Humanos , Ratones , beta-Glucanos
16.
PLoS One ; 16(2): e0246422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33556119

RESUMEN

Despite significant modern medicine progress, having an infectious disease is a major risk factor for humans. Mucosal vaccination is now widely considered as the most promising strategy to defeat infectious diseases; however, only live-attenuated and inactivated mucosal vaccines are used in the clinical field. To date, no subunit mucosal vaccine was approved mainly because of the lack of safe and effective methodologies to either activate or initiate host mucosal immune responses. We have recently elucidated that intranasal administration of enzymatically polymerised caffeic acid potentiates antigen-specific mucosal and systemic antibody responses in mice. However, our earlier study has not confirmed whether these effects are specific to the polymer synthesised from caffeic acid. Here, we show that enzymatically polymerised polyphenols (EPPs) from various phenolic compounds possess mucosal adjuvant activities when administered nasally with an antigen to mice. Potentiation of antigen-specific immune responses by all EPPs tested in this study showed no clear difference among the precursors used. We found that intranasal administration of ovalbumin as the antigen, in combination with all enzymatically polymerised polyphenols used in this study, induced ovalbumin-specific mucosal IgA in the nasal cavity, bronchoalveolar lavage fluid, vaginal fluids, and systemic IgG, especially IgG1, in sera. Our results demonstrate that the mucosal adjuvant activities of polyphenols are not limited to polymerised caffeic acid but are broadly observable across the studied polyphenols. These properties of polyphenols may be advantageous for the development of safe and effective nasal vaccine systems to prevent and/or treat various infectious diseases.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos/inmunología , Inmunidad Mucosa/efectos de los fármacos , Infecciones/inmunología , Polifenoles/inmunología , Animales , Formación de Anticuerpos , Ácidos Cafeicos/inmunología , Femenino , Inmunoglobulina A/inmunología , Ratones , Ratones Endogámicos BALB C
17.
Nutrients ; 13(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467004

RESUMEN

The black yeast Aureobasidium pullulans produces abundant soluble ß-1,3-1,6-glucan-a functional food ingredient with known health benefits. For use as a food material, soluble ß-1,3-1,6-glucan is produced via fermentation using sucrose as the carbon source. Various functionalities of ß-1,3-1,6-glucan have been reported, including its immunomodulatory effect, particularly in the intestine. It also exhibits antitumor and antimetastatic effects, alleviates influenza and food allergies, and relieves stress. Moreover, it reduces the risk of lifestyle-related diseases by protecting the intestinal mucosa, reducing fat, lowering postprandial blood glucose, promoting bone health, and healing gastric ulcers. Furthermore, it induces heat shock protein 70. Clinical studies have reported the antiallergic and triglyceride-reducing effects of ß-1,3-1,6-glucan, which are indicators of improvement in lifestyle-related diseases. The primary and higher-order structures of ß-1,3-1,6-glucan have been elucidated. Specifically, it comprises a single highly-branched glucose residue with the ß-1,6 bond (70% or more) on a backbone of glucose with 1,3-ß bonds. ß-Glucan shows a triple helical structure, and studies on its use as a drug delivery system have been actively conducted. ß-Glucan in combination with anti-inflammatory substances or fullerenes can be used to target macrophages. Based on its health functionality, ß-1,3-1,6-glucan is an interesting material as both food and medicine.


Asunto(s)
Antialérgicos , Antiinflamatorios , Aureobasidium/metabolismo , Alimentos Funcionales , Glucanos/química , Glucanos/farmacología , Hipolipemiantes , Antineoplásicos Fitogénicos , Antivirales , Sistemas de Liberación de Medicamentos , Fermentación , Glucanos/aislamiento & purificación , Glucanos/metabolismo , Hipoglucemiantes , Estilo de Vida , Macrófagos/efectos de los fármacos , Solubilidad
18.
Allergol Int ; 70(1): 105-113, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32919904

RESUMEN

BACKGROUND: The pollen grains of several plant species contain 1,3-ß-D-glucan (BG). BG activates dendritic cells (DCs) and subsequently regulates the innate immune responses. Within Japan, the most common disease associated with type-I hypersensitivity is Japanese cedar pollinosis. However, the role of BG in Japanese cedar pollen (JCP) remains unclear. This study examined the localization and immunological effects of BG in JCP. METHODS: The localization of BG in JCP grain was determined by immunohistochemical staining using a soluble dectin-1 protein probe and a BG recognition protein (BGRP). The content of BG extracted from JCP was measured by a BGRP-based ELISA-like assay. The cytokine production by bone marrow-derived DCs (BMDCs) obtained from wild-type and BG receptor (dectin-1) knock-out mice was examined in vitro. The mice were intranasally administered JCP grains and the specific serum Ig levels were then quantified. RESULTS: BG was detected in the exine and cell wall of the generative cell and tube cell of the JCP grain. Moreover, BG in the exine stimulated production of TNF-α and IL-6 in the BMDCs via a dectin-1-dependent mechanism. Meanwhile, JCP-specific IgE and IgG were detected in the serum of wild-type mice that had been intranasally administered with JCP grains. These mice also exhibited significantly enhanced sneezing behavior. However, dectin-1 knock-out mice exhibited significantly lower JCP-specific IgE and IgG levels compared to wild-type mice. CONCLUSIONS: Latent BG in JCP can act as an adjuvant to induce JCP-specific antibody production via dectin-1.


Asunto(s)
Adyuvantes Inmunológicos , Cryptomeria/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Glucanos , Inmunoglobulina E/inmunología , Polen/inmunología , Rinitis Alérgica Estacional/inmunología , Animales , Formación de Anticuerpos/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos de Plantas/inmunología , Biomarcadores , Humanos , Inmunoglobulina E/sangre , Inmunoglobulina G/inmunología , Ratones , Rinitis Alérgica Estacional/diagnóstico
19.
Med Mycol J ; 61(3): 33-48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863327

RESUMEN

Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances (CADS) such as the hot water extract of C. albicans and Candida water-soluble fractions (CAWS) induce coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the mannoprotein fractions (MN fractions) of clinically isolated Candida species induce vasculitis in mice. We prepared MN fractions from 26 strains of Candida species by conventional hot water extraction and compared vasculitis in DBA/2 mice. The results obtained revealed that the induction of vasculitis and resulting heart failure were significantly dependent on the species; namely, death rates on day 200 were as follows: Candida krusei (100%), Candida albicans (84%), Candida dubliniensis (47%), Candida parapsilosis (44%), Candida glabrata (32%), Candida guilliermondii (20%), and Candida tropicalis (20%). Even for C. albicans, some strains did not induce vasculitis. The present results suggest that MN-induced vasculitis is strongly dependent on the species and strains of Candida, and also that the MN fractions of some non-albicans Candida induce similar toxicity to those of C. albicans.


Asunto(s)
Candida albicans/química , Candida albicans/patogenicidad , Candidiasis , Vasos Coronarios/microbiología , Proteínas Fúngicas/efectos adversos , Vasculitis/microbiología , Animales , Candida albicans/clasificación , Fraccionamiento Celular , Proteínas Fúngicas/aislamiento & purificación , Ratones Endogámicos DBA , Especificidad de la Especie
20.
Int J Med Mushrooms ; 22(3): 269-276, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32479021

RESUMEN

(1->3)-ß-D-glucans (BGs), found in culinary-medicinal mushrooms, exhibit an immunostimulatory effect; hence, it is important to measure the content of BGs contained in mushrooms. BGs content in a mushroom extract was measured using a recombinant BG-binding protein, supBGRP, and compared with the existing BG assay using BGs antibody. The specificity of supBGRP enzyme immunoassay (EIA) was evaluated using a commercially available polysaccharide reagent. The supBGRP did not react to barley glucan, dextran, mannan, pustulan, and xylan, but reacted to sonifilan, and only slightly to curdlan. Among the BGs tested, supBGRP was most reactive to lentinan. The glucans were extracted using hot water and alkaline solution from the fruit body of the following edible mushrooms: Pleurotus ostreatus, Grifola frondosa, Lentinus edodes, Hypsizygus marmoreus, Flammulina velutipes, and Auricularia polytricha. All BGs extracted from edible mushrooms were detectable; in particular, the reactivity of supBGRP toward the alkaline-extracted fraction from Lentinus edodes was higher than that toward polyclonal antibody for BGs. The results suggest that supBGRP had a specific reaction to BG. The supBGRP seems to be superior to antibodies due to easy availability as a reagent and stability as a protein molecule for measurement of BGs.


Asunto(s)
Agaricales/química , Proteínas Portadoras/metabolismo , Lectinas/metabolismo , beta-Glucanos/aislamiento & purificación , Técnicas para Inmunoenzimas , Unión Proteica , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...