Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Cancers (Basel) ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730665

RESUMEN

BACKGROUND: Diffusion-weighted images (DWI) obtained by echo-planar imaging (EPI) are frequently degraded by susceptibility artifacts. It has been suggested that DWI obtained by fast advanced spin-echo (FASE) or reconstructed with deep learning reconstruction (DLR) could be useful for image quality improvements. The purpose of this investigation using in vitro and in vivo studies was to determine the influence of sequence difference and of DLR for DWI on image quality, apparent diffusion coefficient (ADC) evaluation, and differentiation of malignant from benign head and neck tumors. METHODS: For the in vitro study, a DWI phantom was scanned by FASE and EPI sequences and reconstructed with and without DLR. Each ADC within the phantom for each DWI was then assessed and correlated for each measured ADC and standard value by Spearman's rank correlation analysis. For the in vivo study, DWIs obtained by EPI and FASE sequences were also obtained for head and neck tumor patients. Signal-to-noise ratio (SNR) and ADC were then determined based on ROI measurements, while SNR of tumors and ADC were compared between all DWI data sets by means of Tukey's Honest Significant Difference test. RESULTS: For the in vitro study, all correlations between measured ADC and standard reference were significant and excellent (0.92 ≤ ρ ≤ 0.99, p < 0.0001). For the in vivo study, the SNR of FASE with DLR was significantly higher than that of FASE without DLR (p = 0.02), while ADC values for benign and malignant tumors showed significant differences between each sequence with and without DLR (p < 0.05). CONCLUSION: In comparison with EPI sequence, FASE sequence and DLR can improve image quality and distortion of DWIs without significantly influencing ADC measurements or differentiation capability of malignant from benign head and neck tumors.

2.
Clin Chest Med ; 45(2): 505-529, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38816103

RESUMEN

Many promising study results as well as technical advances for chest magnetic resonance imaging (MRI) have demonstrated its academic and clinical potentials during the last few decades, although chest MRI has been used for relatively few clinical situations in routine clinical practice. However, the Fleischner Society as well as the Japanese Society of Magnetic Resonance in Medicine have published a few white papers to promote chest MRI in routine clinical practice. In this review, we present clinical evidence of the efficacy of chest MRI for 1) thoracic oncology and 2) pulmonary vascular diseases.


Asunto(s)
Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico , Neoplasias Torácicas/diagnóstico por imagen , Neoplasias Torácicas/diagnóstico , Neoplasias Torácicas/terapia
3.
JOR Spine ; 7(1): e1320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38500785

RESUMEN

Background: Various treatments for chronic low back pain (LBP) have been reported; among them, platelet-rich plasma (PRP) as a regenerative medicine has attracted much attention. Although Modic type 1 change (MC1) is associated with LBP, no treatment has been established so far. In addition, no studies have administered PRP to intervertebral discs (IVDs) in patients with LBP, targeting MC1 only. Thus, the purpose of this study was to determine the safety and efficacy of PRP administration to the IVDs in patients with MC1 experiencing LBP. Methods: PRP was injected intradiscally to 10 patients with MC1 experiencing LBP. Patients were followed prospectively for up to 24 weeks after primary administration. Physical condition, laboratory data, and lumbar x-ray images were evaluated for safety assessment. Furthermore, to evaluate the effectiveness of PRP, patient-reported outcomes were considered. In addition, changes in MC1 were assessed using magnetic resonance imaging (MRI). Results: There were no adverse events in the laboratory data or lumbar X-ray images after administration. The mean visual analog scale, which was 70.0 ± 13.3 before the treatment, significantly decreased 1 week after PRP administration and was 39.0 ± 28.8 at the last observation. Oswestry disability index and Roland Morris disability questionnaire scores promptly improved after treatment, and both improved significantly 24 weeks after PRP administration. Follow-up MRI 24 weeks after treatment showed a significant decrease in the mean high-signal intensity of fat-suppressed T2-weighted imaging from 10.1 to 7.90 mm2 compared with that before PRP administration. Conclusions: The safety and efficacy of PRP administration to the IVDs of patients with MC1 experiencing LBP were identified. Post-treatment MRI suggested improvement in inflammation, speculating that PRP suppressed inflammation and consequently relieved the patient's symptoms. Despite the small number of patients, this treatment is promising for patients with MC1 experiencing LBP. The study protocol has been reviewed and approved by the Certified Committee for Regenerative Medicine and the Japanese Ministry of Health, Labor and Welfare (Japan Registry of Clinical Trials [jRCT] No. jRCTb042210159).

4.
Magn Reson Imaging ; 108: 67-76, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38309378

RESUMEN

PURPOSE: The purpose of this study was to determine the utility of compressed sensing (CS) with deep learning reconstruction (DLR) for improving spatial resolution, image quality and focal liver lesion detection on high-resolution contrast-enhanced T1-weighted imaging (HR-CE-T1WI) obtained by CS with DLR as compared with conventional CE-T1WI with parallel imaging (PI). METHODS: Seventy-seven participants with focal liver lesions underwent conventional CE-T1WI with PI and HR-CE-T1WI, surgical resection, transarterial chemoembolization, and radiofrequency ablation, followed by histopathological or >2-year follow-up examinations in our hospital. Signal-to-noise ratios (SNRs) of liver, spleen and kidney were calculated for each patient, after which each SNR was compared by means of paired t-test. To compare focal lesion detection capabilities of the two methods, a 5-point visual scoring system was adopted for a per lesion basis analysis. Jackknife free-response receiver operating characteristic (JAFROC) analysis was then performed, while sensitivity and false positive rates (/data set) for consensus assessment of the two methods were also compared by using McNemar's test or the signed rank test. RESULTS: Each SNR of HR-CE-T1WI was significantly higher than that of conventional CE-T1WI with PI (p < 0.05). Sensitivities for consensus assessment showed that HR-CE-MRI had significantly higher sensitivity than conventional CE-T1WI with PI (p = 0.004). Moreover, there were significantly fewer FP/cases for HR-CE-T1WI than for conventional CE-T1WI with PI (p = 0.04). CONCLUSION: CS with DLR are useful for improving spatial resolution, image quality and focal liver lesion detection capability of Gd-EOB-DTPA enhanced 3D T1WI without any need for longer breath-holding time.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Aprendizaje Profundo , Neoplasias Hepáticas , Humanos , Medios de Contraste , Gadolinio , Neoplasias Hepáticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
5.
Eur J Radiol ; 171: 111289, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237523

RESUMEN

PURPOSE: The purpose of this in vivo study was to determine the effect of reverse encoding direction (RDC) on apparent diffusion coefficient (ADC) measurements and its efficacy for improving image quality and diagnostic performance for differentiating malignant from benign tumors on head and neck diffusion-weighted imaging (DWI). METHODS: Forty-eight patients with head and neck tumors underwent DWI with and without RDC and pathological examinations. Their tumors were then divided into two groups: malignant (n = 21) and benign (n = 27). To determine the utility of RDC for DWI, the difference in the deformation ratio (DR) between DWI and T2-weighted images of each tumor was determined for each tumor area. To compare ADC measurement accuracy of DWIs with and without RDC for each patient, ADC values for tumors and spinal cord were determined by using ROI measurements. To compare DR and ADC between two methods, Student's t-tests were performed. Then, ADC values were compared between malignant and benign tumors by Student's t-test on each DWI. Finally, sensitivity, specificity and accuracy were compared by means of McNemar's test. RESULTS: DR of DWI with RDC was significantly smaller than that without RDC (p < 0.0001). There were significant differences in ADC between malignant and benign lesions on each DWI (p < 0.05). However, there were no significant difference of diagnostic accuracy between the two DWIs (p > 0.05). CONCLUSION: RDC can improve image quality and distortion of DWI and may have potential for more accurate ADC evaluation and differentiation of malignant from benign head and neck tumors.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias de Cabeza y Cuello , Humanos , Reproducibilidad de los Resultados , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Cabeza , Cuello , Sensibilidad y Especificidad , Estudios Retrospectivos
6.
Eur Radiol ; 34(4): 2647-2657, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37672056

RESUMEN

OBJECTIVES: Evaluation of in-stent restenosis (ISR), especially for small stents, remains challenging during computed tomography (CT) angiography. We used deep learning reconstruction to quantify stent strut thickness and lumen vessel diameter at the stent and compared it with values obtained using conventional reconstruction strategies. METHODS: We examined 166 stents in 85 consecutive patients who underwent CT and invasive coronary angiography (ICA) within 3 months of each other from 2019-2021 after percutaneous coronary intervention with coronary stent placement. The presence of ISR was defined as percent diameter stenosis ≥ 50% on ICA. We compared a super-resolution deep learning reconstruction, Precise IQ Engine (PIQE), and a model-based iterative reconstruction, Forward projected model-based Iterative Reconstruction SoluTion (FIRST). All images were reconstructed using PIQE and FIRST and assessed by two blinded cardiovascular radiographers. RESULTS: PIQE had a larger full width at half maximum of the lumen and smaller strut than FIRST. The image quality score in PIQE was higher than that in FIRST (4.2 ± 1.1 versus 2.7 ± 1.2, p < 0.05). In addition, the specificity and accuracy of ISR detection were better in PIQE than in FIRST (p < 0.05 for both), with particularly pronounced differences for stent diameters < 3.0 mm. CONCLUSION: PIQE provides superior image quality and diagnostic accuracy for ISR, even with stents measuring < 3.0 mm in diameter. CLINICAL RELEVANCE STATEMENT: With improvements in the diagnostic accuracy of in-stent stenosis, CT angiography could become a gatekeeper for ICA in post-stenting cases, obviating ICA in many patients after recent stenting with infrequent ISR and allowing non-invasive ISR detection in the late phase. KEY POINTS: • Despite CT technology advancements, evaluating in-stent stenosis severity, especially in small-diameter stents, remains challenging. • Compared with conventional methods, the Precise IQ Engine uses deep learning to improve spatial resolution. • Improved diagnostic accuracy of CT angiography helps avoid invasive coronary angiography after coronary artery stenting.


Asunto(s)
Reestenosis Coronaria , Aprendizaje Profundo , Humanos , Angiografía por Tomografía Computarizada/métodos , Angiografía Coronaria/métodos , Reestenosis Coronaria/diagnóstico por imagen , Estudios de Factibilidad , Constricción Patológica , Tomografía Computarizada por Rayos X/métodos , Stents
7.
Eur Radiol ; 34(2): 1065-1076, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37580601

RESUMEN

OBJECTIVE: The purpose of this study was thus to compare capabilities for quantitative differentiation of non- and minimally invasive adenocarcinomas from other of pulmonary MRIs with ultra-short TE (UTE) obtained with single- and dual-echo techniques (UTE-MRISingle and UTE-MRIDual) and thin-section CT for stage IA lung cancer patients. METHODS: Ninety pathologically diagnosed stage IA lung cancer patients who underwent thin-section standard-dose CT, UTE-MRISingle, and UTE-MRIDual, surgical treatment and pathological examinations were included in this retrospective study. The largest dimension (Dlong), solid portion (solid Dlong), and consolidation/tumor (C/T) ratio of each nodule were assessed. Two-tailed Student's t-tests were performed to compare all indexes obtained with each method between non- and minimally invasive adenocarcinomas and other lung cancers. Receiver operating characteristic (ROC)-based positive tests were performed to determine all feasible threshold values for distinguishing non- or minimally invasive adenocarcinoma (MIA) from other lung cancers. Sensitivity, specificity, and accuracy were then compared by means of McNemar's test. RESULTS: Each index showed significant differences between the two groups (p < 0.0001). Specificities and accuracies of solid Dlong for UTE-MRIDual2nd echo and CTMediastinal were significantly higher than those of solid Dlong for UTE-MRISingle and UTE-MRIDual1st echo and all C/T ratios except CTMediastinal (p < 0.05). Moreover, the specificities and accuracies of solid Dlong and C/T ratio were significantly higher than those of Dlong for each method (p < 0.05). CONCLUSION: Pulmonary MRI with UTE is considered at least as valuable as thin-section CT for quantitative differentiation of non- and minimally invasive adenocarcinomas from other stage IA lung cancers. CLINICAL RELEVANCE STATEMENT: Pulmonary MRI with UTE's capability for quantitative differentiation of non- and minimally invasive adenocarcinomas from other lung cancers in stage IA lung cancer patients is equal or superior to that of thin-section CT. KEY POINTS: • Correlations were excellent for pathologically examined nodules with the largest dimensions (Dlong) and a solid component (solid Dlong) for all indexes (0.95 ≤ r ≤ 0.99, p < 0.0001). • Pathologically examined Dlong and solid Dlong obtained with all methods showed significant differences between non- and minimally invasive adenocarcinomas and other lung cancers (p < 0.0001). • Solid tumor components are most accurately measured by UTE-MRIDual2nd echo and CTMediastinal, whereas the ground-glass component is imaged by UTE-MRIDual1st echo and CTlung with high accuracy. UTE-MRIDual predicts tumor invasiveness with 100% sensitivity and 87.5% specificity at a C/T threshold of 0.5.


Asunto(s)
Adenocarcinoma , Enfermedades Pulmonares , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Pulmón/patología , Adenocarcinoma/patología , Imagen por Resonancia Magnética/métodos
9.
Jpn J Radiol ; 42(3): 276-290, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37861955

RESUMEN

PURPOSE: Several reporting systems have been proposed for providing standardized language and diagnostic categories aiming for expressing the likelihood that lung abnormalities on CT images represent COVID-19. We developed a machine learning (ML)-based CT texture analysis software for simple triage based on the RSNA Expert Consensus Statement system. The purpose of this study was to conduct a multi-center and multi-reader study to determine the capability of ML-based computer-aided simple triage (CAST) software based on RSNA expert consensus statements for diagnosis of COVID-19 pneumonia. METHODS: For this multi-center study, 174 cases who had undergone CT and polymerase chain reaction (PCR) tests for COVID-19 were retrospectively included. Their CT data were then assessed by CAST and consensus from three board-certified chest radiologists, after which all cases were classified as either positive or negative. Diagnostic performance was then compared by McNemar's test. To determine radiological finding evaluation capability of CAST, three other board-certified chest radiologists assessed CAST results for radiological findings into five criteria. Finally, accuracies of all radiological evaluations were compared by McNemar's test. RESULTS: A comparison of diagnosis for COVID-19 pneumonia based on RT-PCR results for cases with COVID-19 pneumonia findings on CT showed no significant difference of diagnostic performance between ML-based CAST software and consensus evaluation (p > 0.05). Comparison of agreement on accuracy for all radiological finding evaluations showed that emphysema evaluation accuracy for investigator A (AC = 91.7%) was significantly lower than that for investigators B (100%, p = 0.0009) and C (100%, p = 0.0009). CONCLUSION: This multi-center study shows COVID-19 pneumonia triage by CAST can be considered at least as valid as that by chest expert radiologists and may be capable for playing as useful a complementary role for management of suspected COVID-19 pneumonia patients as well as the RT-PCR test in routine clinical practice.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Estudios Retrospectivos , Triaje/métodos , Tomografía Computarizada por Rayos X/métodos , Sensibilidad y Especificidad , Aprendizaje Automático , Radiólogos , Computadores
10.
Invest Radiol ; 59(1): 38-52, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707840

RESUMEN

ABSTRACT: Since lung magnetic resonance imaging (MRI) became clinically available, limited clinical utility has been suggested for applying MRI to lung diseases. Moreover, clinical applications of MRI for patients with lung diseases or thoracic oncology may vary from country to country due to clinical indications, type of health insurance, or number of MR units available. Because of this situation, members of the Fleischner Society and of the Japanese Society for Magnetic Resonance in Medicine have published new reports to provide appropriate clinical indications for lung MRI. This review article presents a brief history of lung MRI in terms of its technical aspects and major clinical indications, such as (1) what is currently available, (2) what is promising but requires further validation or evaluation, and (3) which developments warrant research-based evaluations in preclinical or patient studies. We hope this article will provide Investigative Radiology readers with further knowledge of the current status of lung MRI and will assist them with the application of appropriate protocols in routine clinical practice.


Asunto(s)
Enfermedades Pulmonares , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Tórax , Espectroscopía de Resonancia Magnética
11.
Eur Spine J ; 32(12): 4153-4161, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37837558

RESUMEN

PURPOSE: It is still unclear how lumbar spinal surgery affects the lipid metabolism of patients with lumbar spinal disorders (LSDs) such as lumbar spinal canal stenosis and lumbar disk herniation. The present study aimed to assess the impact of lumbar spinal surgery on lipid metabolism in patients with LSDs and clarify the factors associated with changes in visceral fat (VF) accumulation before and after lumbar spinal surgery. METHODS: Consecutive patients with lumbar spinal surgery for LSDs were prospectively included. Abdominal computed tomography images and blood examination of the participants were evaluated before surgery and at 6 months and 1 year after surgery. The cross-sectional VF area (VFA) was measured at the level of the navel using computed tomography images. Blood examination items included triglycerides and high-density lipoprotein (HDL). RESULTS: The study enrolled a total of 138 patients. Female patients with LSDs had significantly increased VFA and serum triglyceride levels after lumbar spinal surgery. On multivariable analysis, the group with > 100 cm2 of preoperative VFA and a postoperative decrease in VFA had a significantly worse preoperative walking ability based on the Japanese Orthopaedic Association Back Pain Evaluation Questionnaire (relative risk 2.1; 95% confidence intervals 1.1-4.1). CONCLUSIONS: The present study demonstrated that patients with LSDs did not necessarily improve their lipid metabolism after lumbar spinal surgery. Instead, female patients with LSDs had significantly deteriorated lipid metabolism after lumbar spinal surgery. Finally, a worse preoperative walking ability was associated with the improvement in excess VF accumulation after lumbar spinal surgery.


Asunto(s)
Descompresión Quirúrgica , Estenosis Espinal , Femenino , Humanos , Estudios Transversales , Descompresión Quirúrgica/métodos , Metabolismo de los Lípidos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Estenosis Espinal/complicaciones , Estenosis Espinal/diagnóstico por imagen , Estenosis Espinal/cirugía , Resultado del Tratamiento , Estudios Prospectivos
12.
Magn Reson Med Sci ; 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37661425

RESUMEN

PURPOSE: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in different body fields. However, there have been no reports regarding the utility of DLR for image quality and T-factor assessment improvements on T2-weighted imaging (T2WI), short inversion time (TI) inversion recovery (STIR) imaging, and unenhanced- and contrast-enhanced (CE) 3D fast spoiled gradient echo (GRE) imaging with and without CS in comparison with thin-section multidetector-row CT (MDCT) for non-small cell lung cancer (NSCLC) patients. The purpose of this study was to determine the utility of DLR for improving image quality and the appropriate sequence for T-category assessment for NSCLC patients. METHODS: As subjects for this study, 213 pathologically diagnosed NSCLC patients who underwent thin-section MDCT and MR imaging as well as T-factor diagnosis were retrospectively enrolled. SNR of each tumor was calculated and compared by paired t-test for each sequence with and without DLR. T-factor for each patient was assessed with thin-section MDCT and all MR sequences, and the accuracy for T-factor diagnosis was compared among all sequences and thin-section CT by means of McNemar's test. RESULTS: SNRs of T2WI, STIR imaging, unenhanced thin-section Quick 3D imaging, and CE-thin-section Quick 3D imaging with DLR were significantly higher than SNRs of those without DLR (P < 0.05). Diagnostic accuracy of STIR imaging and CE-thick- or thin-section Quick 3D imaging was significantly higher than that of thin-section CT, T2WI, and unenhanced thick- or thin-section Quick 3D imaging (P < 0.05). CONCLUSION: DLR is thus considered useful for image quality improvement on MR imaging. STIR imaging and CE-Quick 3D imaging with or without CS were validated as appropriate MR sequences for T-factor evaluation in NSCLC patients.

13.
Diagnostics (Basel) ; 13(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568881

RESUMEN

An area-detector CT (ADCT) has a 320-detector row and can obtain isotropic volume data without helical scanning within an area of nearly 160 mm. The actual-perfusion CT data within this area can, thus, be obtained by means of continuous dynamic scanning for the qualitative or quantitative evaluation of regional perfusion within nodules, lymph nodes, or tumors. Moreover, this system can obtain CT data with not only helical but also step-and-shoot or wide-volume scanning for body CT imaging. ADCT also has the potential to use dual-energy CT and subtraction CT to enable contrast-enhanced visualization by means of not only iodine but also xenon or krypton for functional evaluations. Therefore, systems using ADCT may be able to function as a pulmonary functional imaging tool. This review is intended to help the reader understand, with study results published during the last a few decades, the basic or clinical evidence about (1) newly applied reconstruction methods for radiation dose reduction for functional ADCT, (2) morphology-based pulmonary functional imaging, (3) pulmonary perfusion evaluation, (4) ventilation assessment, and (5) biomechanical evaluation.

14.
Diagn Interv Radiol ; 29(5): 664-673, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37554957

RESUMEN

PURPOSE: Deep learning reconstruction (DLR) to improve imaging quality has already been introduced, but no studies have evaluated the effect of DLR on diffusion-weighted imaging (DWI) or intravoxel incoherent motion (IVIM) in in vitro or in vivo studies. The purpose of this study was to determine the effect of DLR for magnetic resonance imaging (MRI) in terms of image quality improvement, apparent diffusion coefficient (ADC) assessment, and IVIM index evaluation on DWI through in vitro and in vivo studies. METHODS: For the in vitro study, a phantom recommended by the Quantitative Imaging Biomarkers Alliance was scanned and reconstructed with and without DLR, and 15 patients with brain tumors with normal-appearing gray and white matter examined using IVIM and reconstructed with and without DLR were included in the in vivo study. The ADCs of all phantoms for DWI with and without DLR, as well as the coefficient of variation percentage (CV%), and ADCs and IVIM indexes for each participant, were evaluated based on DWI with and without DLR by means of region-of-interest measurements. For the in vitro study, using the mean ADCs for all phantoms, a t-test was adopted to compare DWI with and without DLR. For the in vivo study, a Wilcoxon signed-rank test was used to compare the CV% between the two types of DWI. In addition, the Wilcoxon signed-rank test was used to compare the ADC, true diffusion coefficient (D), pseudodiffusion coefficient (D*), and percentage of water molecules in micro perfusion within 1 voxel (f) with and without DLR; the limits of agreement of each parameter were determined through a Bland-Altman analysis. RESULTS: The in vitro study identified no significant differences between the ADC values for DWI with and without DLR (P > 0.05), and the CV% was significantly different for DWI with and without DLR (P < 0.05) when b values ≥250 s/mm2 were used. The in vivo study revealed that D* and f with and without DLR were significantly different (P < 0.001). The limits of agreement of the ADC, D, and D* values for DWI with and without DLR were determined as 0.00 ± 0.51 × 10-3, 0.00 ± 0.06 × 10-3, and 1.13 ± 4.04 × 10-3 mm2/s, respectively. The limits of agreement of the f values for DWI with and without DLR were determined as -0.01 ± 0.07. CONCLUSION: Deep learning reconstruction for MRI has the potential to significantly improve DWI quality at higher b values. It has some effect on D* and f values in the IVIM index evaluation, but ADC and D values are less affected by DLR.


Asunto(s)
Aprendizaje Profundo , Humanos , Mejoramiento de la Calidad , Imagen de Difusión por Resonancia Magnética/métodos , Movimiento (Física) , Encéfalo/diagnóstico por imagen
15.
Eur J Radiol ; 166: 110969, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37454556

RESUMEN

PURPOSE: To compare the capability of CTs obtained with a silver or copper x-ray beam spectral modulation filter (Ag filter and Cu filter) and reconstructed with FBP, hybrid-type IR and deep learning reconstruction (DLR) for radiation dose reduction for lung nodule detection using a chest phantom study. MATERIALS AND METHODS: A chest CT phantom was scanned with a 320-detector row CT with Ag filter at 0.6, 1.6 and 2.5 mGy and Cu filters at 0.6, 1.6, 2.5 and 9.6 mGy, and reconstructed with the aforementioned methods. To compare image quality of all the CT data, SNRs and CNRs for any nodule were calculated for all protocols. To compare nodule detection capability among all protocols, the probability of detection of any nodule was assessed with a 5-point visual scoring system. Then, ROC analyses were performed to compare nodule detection capability of Ag and Cu filters for each radiation dose data with the same method and of the three methods for any radiation dose data and obtained with either filter. RESULTS: At any of the doses, SNR, CNR and area under the curve for the Ag filter were significantly higher or larger than those for the Cu filter (p < 0.05). Moreover, with DLR, those values were significantly higher or larger than all the others for CTs obtained with any of the radiation doses and either filter (p < 0.05). CONCLUSION: The Ag filter and DLR can significantly improve image quality and nodule detection capability compared with the Cu filter and other reconstruction methods at each of radiation doses used.


Asunto(s)
Cobre , Plata , Humanos , Rayos X , Reducción Gradual de Medicamentos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos
16.
Jpn J Radiol ; 41(12): 1373-1388, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37498483

RESUMEN

PURPOSE: Deep learning reconstruction (DLR) has been introduced by major vendors, tested for CT examinations of a variety of organs, and compared with other reconstruction methods. The purpose of this study was to compare the capabilities of DLR for image quality improvement and lung texture evaluation with those of hybrid-type iterative reconstruction (IR) for standard-, reduced- and ultra-low-dose CTs (SDCT, RDCT and ULDCT) obtained with high-definition CT (HDCT) and reconstructed at 0.25-mm, 0.5-mm and 1-mm section thicknesses with 512 × 512 or 1024 × 1024 matrixes for patients with various pulmonary diseases. MATERIALS AND METHODS: Forty age-, gender- and body mass index-matched patients with various pulmonary diseases underwent SDCT (CT dose index volume : mean ± standard deviation, 9.0 ± 1.8 mGy), RDCT (CTDIvol: 1.7 ± 0.2 mGy) and ULDCT (CTDIvol: 0.8 ± 0.1 mGy) at a HDCT. All CT data set were then reconstructed with 512 × 512 or 1024 × 1024 matrixes by means of hybrid-type IR and DLR. SNR of lung parenchyma and probabilities of all lung textures were assessed for each CT data set. SNR and detection performance of each lung texture reconstructed with DLR and hybrid-type IR were then compared by means of paired t tests and ROC analyses for all CT data at each section thickness. RESULTS: Data for each radiation dose showed DLR attained significantly higher SNR than hybrid-type IR for each of the CT data (p < 0.0001). On assessments of all findings except consolidation and nodules or masses, areas under the curve (AUCs) for ULDCT with hybrid-type IR for each section thickness (0.91 ≤ AUC ≤ 0.97) were significantly smaller than those with DLR (0.97 ≤ AUC ≤ 1, p < 0.05) and the standard protocol (0.98 ≤ AUC ≤ 1, p < 0.05). CONCLUSION: DLR is potentially more effective for image quality improvement and lung texture evaluation than hybrid-type IR on all radiation dose CTs obtained at HDCT and reconstructed with each section thickness with both matrixes for patients with a variety of pulmonary diseases.


Asunto(s)
Aprendizaje Profundo , Enfermedades Pulmonares , Humanos , Dosis de Radiación , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos
17.
Diagnostics (Basel) ; 13(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37443688

RESUMEN

Dual-energy computed tomography (DECT) can improve the differentiation of material by using two different X-ray energy spectra, and may provide new imaging techniques to diagnostic radiology to overcome the limitations of conventional CT in characterizing tissue. Some techniques have used dual-energy imaging, which mainly includes dual-sourced, rapid kVp switching, dual-layer detectors, and split-filter imaging. In iodine images, images of the lung's perfused blood volume (PBV) based on DECT have been applied in patients with pulmonary embolism to obtain both images of the PE occluding the pulmonary artery and the consequent perfusion defects in the lung's parenchyma. PBV images of the lung also have the potential to indicate the severity of PE, including chronic thromboembolic pulmonary hypertension. Virtual monochromatic imaging can improve the accuracy of diagnosing pulmonary vascular diseases by optimizing kiloelectronvolt settings for various purposes. Iodine images also could provide a new approach in the area of thoracic oncology, for example, for the characterization of pulmonary nodules and mediastinal lymph nodes. DECT-based lung ventilation imaging is also available with noble gases with high atomic numbers, such as xenon, which is similar to iodine. A ventilation map of the lung can be used to image various pulmonary diseases such as chronic obstructive pulmonary disease.

18.
Magn Reson Med ; 90(5): 2001-2010, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37288577

RESUMEN

PURPOSE: To develop 3D ultrashort-TE (UTE) sequences with tight TE intervals (δTE), allowing for accurate T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping of lungs under free breathing. METHODS: We have implemented a four-echo UTE sequence with δTE (< 0.5 ms). A Monte-Carlo simulation was performed to identify an optimal number of echoes that would result in a significant improvement in the accuracy of the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ fit within an acceptable scan time. A validation study was conducted on a phantom with known short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ values (< 5 ms). The scanning protocol included a combination of a standard multi-echo UTE with six echoes (2.2-ms intervals) and a new four-echo UTE (TE < 2 ms) with tight TE intervals δTE. The human imaging was performed at 3 T on 6 adult volunteers. T 2 * $$ {\mathrm{T}}_2^{\ast } $$ mapping was performed with mono-exponential and bi-exponential models. RESULTS: The simulation for the proposed 10-echo acquisition predicted over 2-fold improvement in the accuracy of estimating the short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ compared with the regular six-echo acquisition. In the phantom study, the T 2 * $$ {\mathrm{T}}_2^{\ast } $$ was measured up to three times more accurately compared with standard six-echo UTE. In human lungs, T 2 * $$ {\mathrm{T}}_2^{\ast } $$ maps were successfully obtained from 10 echoes, yielding average values T 2 * $$ {\mathrm{T}}_2^{\ast } $$ = 1.62 ± 0.48 ms for mono-exponential and T 2 s * $$ {\mathrm{T}}_{2s}^{\ast } $$ = 1.00 ± 0.53 ms for bi-exponential models. CONCLUSION: A UTE sequence using δTE was implemented and validated on short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ phantoms. The sequence was successfully applied for lung imaging; the bi-exponential signal model fit for human lung imaging may provide valuable insights into the diseased human lungs.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Adulto , Humanos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Interpretación de Imagen Asistida por Computador/métodos , Pulmón/diagnóstico por imagen
19.
J Comput Assist Tomogr ; 47(3): 494-499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37185016

RESUMEN

OBJECTIVE: Although amide proton transfer-weighted (APTw) imaging is reported by 2-dimensional (2D) spin-echo-based sequencing, 3-dimensional (3D) APTw imaging can be obtained by gradient-echo-based sequencing. The purpose of this study was to compare the efficacy of APTw imaging between 2D and 3D imaging in patients with various brain tumors. METHODS: A total of 49 patients who had undergone 53 examinations [5 low-grade gliomas (LGG), 16 high-grade gliomas (HGG), 6 malignant lymphomas, 4 metastases, and 22 meningiomas] underwent APTw imaging using 2D and 3D sequences. The magnetization transfer ratio asymmetry (MTR asym ) was assessed by means of region of interest measurements. Pearson correlation was performed to determine the relationship between MTR asym for the 2 methods, and Student's t test to compare MTR asym for LGG and HGG. The diagnostic accuracy to differentiate HGG from LGG of the 2 methods was compared by means of the McNemar test. RESULTS: Three-dimensional APTw imaging showed a significant correlation with 2D APTw imaging ( r = 0.79, P < 0.0001). The limits of agreement between the 2 methods were -0.021 ± 1.42%. The MTR asym of HGG (2D: 1.97 ± 0.96, 3D: 2.11 ± 0.95) was significantly higher than those of LGG (2D: 0.46 ± 0.89%, P < 0.01; 3D: 0.15 ± 1.09%, P < 0.001). The diagnostic performance of the 2 methods to differentiate HGG from LGG was not significantly different ( P = 1). CONCLUSIONS: The potential capability of 3D APTw imaging is equal to or greater than that of 2D APTw imaging and is considered at least as valuable in patients with brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Meníngeas , Humanos , Protones , Imagen por Resonancia Magnética/métodos , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Imagenología Tridimensional
20.
J Thorac Dis ; 15(2): 516-528, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36910071

RESUMEN

Background: Lung cancer frequently occurs in lungs with background idiopathic interstitial pneumonias (IIPs). Limited resection is often selected to treat lung cancer in patients with IIPs in whom respiratory function is already compromised. However, accurate surgical margins are essential for curative resection; underestimating these margins is a risk for residual lung cancer after surgery. We aimed to investigate the findings of lung fields adjacent to cancer segments affect the estimation of tumor size on computed tomography compared with the pathological specimen. Methods: This analytical observational study retrospectively investigated 896 patients with lung cancer operated on at Fujita Health University from January 2015 to June 2020. The definition of underestimation was a ≥10 mm difference between the radiological and pathological maximum sizes of the tumor. Results: The lung tumors were in 15 honeycomb, 30 reticulated, 207 emphysematous, and 628 normal lungs. The ratio of underestimation in honeycomb lungs was 33.3% compared to 7.4% without honeycombing (P=0.004). Multivariate analysis showed that honeycombing was a significant risk factor for tumor size underestimation. A Bland-Altman plot represented wide 95% limits of agreement, -40.8 to 70.2 mm, between the pathological and radiological maximum tumor sizes in honeycomb lungs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...