Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Phys Med Biol ; 65(16): 165017, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32320955

RESUMEN

PURPOSE: Early animal studies suggest that parotid gland (PG) toxicity prediction could be improved by an accurate estimation of the radiation dose to sub-regions of the PG. Translation to clinical investigation requires voxel-level dose accumulation in this organ that responds volumetrically throughout treatment. To date, deformable image registration (DIR) has been evaluated for the PG using only surface alignment. We sought to develop and evaluate an advanced DIR technique capable of modeling these complex PG volume changes over the course of radiation therapy. MATERIALS AND METHODS: Planning and mid-treatment magnetic resonance images from 19 patients and computed tomography images from nine patients who underwent radiation therapy for head and neck cancer were retrospectively evaluated. A finite element model (FEM)-based DIR algorithm was applied between the corresponding pairs of images, based on boundary conditions on the PG surfaces only (Morfeus-spatial). To investigate an anticipated improvement in accuracy, we added a population model-based thermal expansion coefficient to simulate the dose distribution effect on the volume change inside the glands (Morfeus-spatialDose). The model accuracy was quantified using target registration error for magnetic resonance images, where corresponding anatomical landmarks could be identified. The potential clinical impact was evaluated using differences in mean dose, median dose, D98, and D50 of the PGs. RESULTS: In the magnetic resonance images, the mean (±standard deviation) target registration error significantly reduced by 0.25 ± 0.38 mm (p = 0.01) when using Morfeus-spatialDose instead of Morfeus-spatial. In the computed tomography images, differences in the mean dose, median dose, D98, and D50 of the PGs reached 2.9 ± 0.8, 3.8, 4.1, and 3.8 Gy, respectively, between Morfeus-spatial and Morfeus-spatialDose. CONCLUSION: Differences between Morfeus-spatial and Morfeus-spatialDose may be impactful when considering high-dose gradients of radiation in the PGs. The proposed DIR model can allow more accurate PG alignment than the standard model and improve dose estimation and toxicity prediction modeling.


Asunto(s)
Algoritmos , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Glándula Parótida/patología , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Glándula Parótida/efectos de la radiación , Estudios Prospectivos , Dosis de Radiación , Estudios Retrospectivos
2.
Radiother Oncol ; 134: 101-109, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31005203

RESUMEN

PURPOSE: To evaluate the effect of setup uncertainties including uncertainties between different breath holds (BH) and inter-fractional anatomical changes under CT-guided BH with intensity-modulated proton therapy (IMPT) in patients with liver cancer. METHODS AND MATERIALS: This retrospective study considered 17 patients with liver tumors who underwent feedback-guided BH (FGBH) IMRT treatment with daily CT-on-rail imaging. Planning CT images were acquired at simulation using FGBH, and FGBH CT-on-rail images were also acquired prior to each treatment. Selective robust IMPT plans were generated using planning CT and re-calculated on each daily CT-on-rail image. Subsequently, the fractional doses were deformed and accumulated onto the planning CT according to the deformable image registration between daily and planning CTs. The doses to the target and organs at risk (OARs) were compared between IMRT, planned IMPT, and accumulated IMPT doses. RESULTS: For IMPT plans, the mean of D98% of CTV for all 17 patients was slightly reduced from the planned dose of 68.90 ±â€¯1.61 Gy to 66.48 ±â€¯1.67 Gy for the accumulated dose. The target coverage could be further improved by adjusting planning techniques. The dose-volume histograms of both planned and accumulated IMPT doses showed better sparing of OARs than that of the IMRT. CONCLUSIONS: IMPT with FGBH and CT-on-rail guidance is a robust treatment approach for liver tumor cases.


Asunto(s)
Neoplasias Hepáticas/radioterapia , Terapia de Protones/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada por Rayos X/métodos , Contencion de la Respiración , Femenino , Humanos , Masculino , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...