Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4955, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591840

RESUMEN

The Totten Glacier in East Antarctica, with an ice volume equivalent to >3.5 m of global sea-level rise, is grounded below sea level and, therefore, vulnerable to ocean forcing. Here, we use bathymetric and oceanographic observations from previously unsampled parts of the Totten continental shelf to reveal on-shelf warm water pathways defined by deep topographic features. Access of warm water to the Totten Ice Shelf (TIS) cavity is facilitated by a deep shelf break, a broad and deep depression on the shelf, a cyclonic circulation that carries warm water to the inner shelf, and deep troughs that provide direct access to the TIS cavity. The temperature of the warmest water reaching the TIS cavity varies by ~0.8 °C on an interannual timescale. Numerical simulations constrained by the updated bathymetry demonstrate that the deep troughs play a critical role in regulating ocean heat transport to the TIS cavity and the subsequent basal melt of the ice shelf.

2.
Sci Adv ; 8(42): eadc9174, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36260668

RESUMEN

Antarctic Bottom Water (AABW) occupies the abyssal layer of the world ocean and contributes to the global overturning circulation. It originates from dense shelf water, which forms from brine rejection during sea ice production. An important region of AABW formation has been identified off the Cape Darnley polynya. However, it remains unclear why and how high ice production leads to AABW formation. Using moored acoustic measurements and a satellite microwave algorithm, we reveal that underwater frazil ice dominates in the polynya. This underwater ice formation prevents heat-insulating surface-cover ice forming, thereby enabling efficient ice production. The high ice production in the nearshore and longer residence times create high-salinity source water for the AABW. Underwater frazil ice occurs as long as strong winds continue and occasionally penetrates depths of at least 80 m. Deep-penetrating frazil ice is particularly prominent in this polynya, while it also occurs in other Antarctic coastal polynyas.

3.
Sci Rep ; 12(1): 8462, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589760

RESUMEN

Chlorofluorocarbon (CFC) and sulfur hexafluoride (SF6) were used to investigate the timescale of Antarctic Bottom Water (AABW) that spreads off Cape Darnley (CD) in East Antarctica. The age of the AABW was estimated based on the observed SF6/CFC-12 ratio while taking into account tracer dilution by Lower Circumpolar Deep Water. Along the western canyons off CD and the ~ 3000 to 3500 m isobaths, the bottom water age was < 5 years, reflecting the spread of newly formed CD Bottom Water. Higher ages of ~ 8 years obtained for areas east of CD and > 20 years in the northwestern offshore region indicate inflows of AABW through the Princess Elizabeth Trough and Weddell Sea Deep Water, respectively. This study determined the age distribution in the region off CD, where three different types of AABW spread.


Asunto(s)
Hexafluoruro de Azufre , Agua , Distribución por Edad , Regiones Antárticas , Clorofluorocarburos
4.
Sci Rep ; 11(1): 14526, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267253

RESUMEN

The western subarctic Pacific exhibits major biological productivity fed by the Oyashio Current and its two source waters: Western Subarctic Water, which supplies nutrients from the subarctic Pacific, and cold Okhotsk Sea Intermediate Water (OSIW), which supplies iron from the Sea of Okhotsk. We created seasonal climatologies of water properties to understand how the long-term trend (~ 50 years) and 18.6-year tidal cycle affect the Oyashio Intermediate Water (OYW). We found that over the trend, decreased OSIW outflow due to weakening of North Pacific overturning modifies OYW in winter. Meanwhile, OSIW outflow increases (decreases) in strong (weak) tide years. We predict that the opposite effects of the trend and strong tide will lead to stagnation of OYW properties until the mid-2020s, followed by accelerated warming until the mid-2030s (weak tide). A predicted 1 °C increase in OYW temperature and 50% decrease in OSIW content between 1960 and 2040 potentially have significant impact on biological productivity and carbon drawdown in the North Pacific.

5.
Nat Commun ; 11(1): 4221, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32839464

RESUMEN

Mass loss from the Antarctic ice sheet, Earth's largest freshwater reservoir, results directly in global sea-level rise and Southern Ocean freshening. Observational and modeling studies have demonstrated that ice shelf basal melting, resulting from the inflow of warm water onto the Antarctic continental shelf, plays a key role in the ice sheet's mass balance. In recent decades, warm ocean-cryosphere interaction in the Amundsen and Bellingshausen seas has received a great deal of attention. However, except for Totten Ice Shelf, East Antarctic ice shelves typically have cold ice cavities with low basal melt rates. Here we present direct observational evidence of high basal melt rates (7-16 m yr-1) beneath an East Antarctic ice shelf, Shirase Glacier Tongue, driven by southward-flowing warm water guided by a deep continuous trough extending to the continental slope. The strength of the alongshore wind controls the thickness of the inflowing warm water layer and the rate of basal melting.

6.
Ann Glaciol ; 59(76 Pt 2): 101-111, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32675891

RESUMEN

Sea-ice thickness in the Sea of Okhotsk is estimated for 2004-2008 from ICESat derived freeboard under the assumption of hydrostatic balance. Total ice thickness including snow depth (h tot ) averaged over 2004-2008 is 95 cm. The interannual variability of h tot is large; from 77.5 cm (2008) to 110.4 cm (2005). The mode of h tot varies from 50-60 cm (2007 and 2008) to 70-80 cm (2005). Ice thickness derived from ICESat data is validated from a comparison with that observed by Electromagnetic Induction Instrument (EM) aboard the icebreaker Soya near Hokkaido, Japan. Annual maps of h tot reveal that the spatial distribution of h tot is similar every year. Ice volume of 6.3 × 1011 m3 is estimated from the ICESat derived h tot and AMSR-E derived ice concentration. A comparison with ice area demonstrates that the ice volume cannot always be represented by the area solely, despite the fact that the area has been used as a proxy of the volume in the Sea of Okhotsk. The ice volume roughly corresponds to that of annual ice production in the major coastal polynyas estimated based on heat budget calculations. This also supports the validity of the estimation of sea-ice thickness and volume using ICESat data.

7.
Sci Rep ; 7(1): 8170, 2017 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811530

RESUMEN

Ice-albedo feedback due to the albedo contrast between water and ice is a major factor in seasonal sea ice retreat, and has received increasing attention with the Arctic Ocean shifting to a seasonal ice cover. However, quantitative evaluation of such feedbacks is still insufficient. Here we provide quantitative evidence that heat input through the open water fraction is the primary driver of seasonal and interannual variations in Arctic sea ice retreat. Analyses of satellite data (1979-2014) and a simplified ice-upper ocean coupled model reveal that divergent ice motion in the early melt season triggers large-scale feedback which subsequently amplifies summer sea ice anomalies. The magnitude of divergence controlling the feedback has doubled since 2000 due to a more mobile ice cover, which can partly explain the recent drastic ice reduction in the Arctic Ocean.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA