Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(12): e0279315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36525454

RESUMEN

BACKGROUND: In recent years, there has been increasing evidence that several lipid metabolism abnormalities play an important role in the pathogenesis of neurodegenerative diseases. However, it is still unclear which lipid metabolism abnormalities play the most important role in neurodegenerative diseases. Plasma lipid metabolomics (lipidomics) has been shown to be an unbiased method that can be used to explore lipid metabolism abnormalities in neurodegenerative diseases. Plasma lipidomics in neurodegenerative diseases has been performed only in idiopathic Parkinson's disease (IPD) and Alzheimer's disease (AD), and comprehensive studies are needed to clarify the pathogenesis. METHODS: In this study, we investigated plasma lipids using lipidomics in individuals with neurodegenerative diseases and healthy controls (CNs). Plasma lipidomics was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in those with IPD, dementia with Lewy bodies (DLB), multiple system atrophy (MSA), AD, and progressive supranuclear palsy (PSP) and CNs. RESULTS: The results showed that (1) plasma sphingosine-1-phosphate (S1P) was significantly lower in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (2) Plasma monohexylceramide (MonCer) and lactosylceramide (LacCer) were significantly higher in all neurodegenerative disease groups (IPD, DLB, MSA, AD, and PSP) than in the CN group. (3) Plasma MonCer levels were significantly positively correlated with plasma LacCer levels in all enrolled groups. CONCLUSION: S1P, Glucosylceramide (GlcCer), the main component of MonCer, and LacCer are sphingolipids that are biosynthesized from ceramide. Recent studies have suggested that elevated GlcCer and decreased S1P levels in neurons are related to neuronal cell death and that elevated LacCer levels induce neurodegeneration by neuroinflammation. In the present study, we found decreased plasma S1P levels and elevated plasma MonCer and LacCer levels in those with neurodegenerative diseases, which is a new finding indicating the importance of abnormal sphingolipid metabolism in neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Humanos , Esfingolípidos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/metabolismo
2.
Ann Clin Transl Neurol ; 9(8): 1136-1146, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750465

RESUMEN

BACKGROUND: Increasing evidence suggests that alpha-synuclein (αSyn) accumulation in cholinergic and adrenergic fibers in the skin is a useful biomarker to diagnose idiopathic Parkinson's disease (IPD). It has been widely reported that phosphorylated αSyn (p-αSyn) deposits in autonomic fibers in IPD are a biomarker in the skin, but other tissue localizations have not been fully investigated. OBJECTIVE: It has been previously suggested that αSyn aggregates activate peripheral macrophages and that peripheral macrophages ingest pathological αsyn aggregates in aged rats or IPD patients. However, it remains to be elucidated whether peripheral macrophages in the skin of IPD patients accumulate αSyn. We evaluated whether (1) p-αSyn deposits in dermal macrophages might represent a useful biomarker for IPD and (2) dermal macrophages play a role in the underlying pathogenesis of IPD. METHODS: We performed an immunohistological analysis of skin biopsy specimens from IPD patients and controls. RESULTS: We found that (1) p-αSyn accumulation is present in dermal macrophages in skin biopsy specimens from patients with IPD, (2) not only dermal adrenergic fibers with p-αSyn deposits but also dermal macrophages with p-αSyn deposits are useful biomarkers for IPD patients and (3) the number of macrophages was significantly positively correlated with the number of macrophages with p-αSyn deposits in the dermis of IPD patients. INTERPRETATION: Our results suggest that dermal macrophages, which are innate immune cells, play an important role in IPD patients and are a novel biomarker for IPD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Biomarcadores , Macrófagos , Enfermedad de Parkinson/patología , Ratas , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...