Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Food Sci ; 89(3): 1414-1427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38328986

RESUMEN

Sourdough fermentation is an ancient leavening method that uses wild yeasts to produce carbon dioxide, contributing to bread rise, and bacteria which produce organic acids. Sourdough starter cultures are known to be diverse in terms of the microorganisms they comprise and while specific genera and species of microorganisms have been identified from starters and associated with specific attributes, overarching relationships between sourdough starter culture microbiomes and bread quality are not well understood. The objective of this study was to characterize differences in the physical and chemical properties of breads produced with sourdough starter cultures with unique microbiomes. Sourdough starter cultures (n = 20) of known microbial populations were used to produce wheat-based dough and bread, which were analyzed for chemical and physical properties then compared to their microbial populations in order to identify relationships between microbial profiles and dough/bread qualities. All samples were also compared to bread produced only with Saccharomyces cerevisiae (baker's yeast). Significant differences among pH, titratable acidity, loaf volume, crumb firmness, crust color, free amino acids, and organic acids were observed when comparing sourdough breads to the yeast-only control (p ≤ 0.05). Furthermore, bacterial diversity of sourdough starter cultures was correlated with lactic acid and free amino acid in the dough and loaf volume and crumb firmness of baked breads. No significant correlations were found between fungal diversity and measured outcomes. These data demonstrate the importance of considering sourdough starter microbiomes as an ingredient in baked goods and they contribute to quality and safety outcomes in bread production. PRACTICAL APPLICATION: Sourdough starter cultures have diverse and dynamic populations of bacteria and yeasts, which contribute to the production of bread products. These populations can influence the physical and chemical properties of sourdough fermentation and final breads. Understanding of the relationship between sourdough starter microbiomes and bread quality parameters can lead to targeted development of sourdough bread products with specific physical and chemical properties.


Asunto(s)
Microbiota , Levadura Seca , Pan/análisis , Triticum/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentación , Bacterias/metabolismo , Aminoácidos/metabolismo
2.
Front Microbiol ; 14: 1208284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614608

RESUMEN

The processing of dairy products currently generates significant amounts of waste, particularly in the form of liquid whey. The disposal of whey poses a challenge to the environment due to its high organic content and biological oxygen demand. Whey contains lactose, soluble proteins, lipids, and minerals. While Saccharomyces cerevisiae can efficiently utilize glucose, they are unable to metabolize lactose. In contrast, Kluyveromyces spp. encode two genes, Lac12 and Lac4 that enable conversion of lactose to other by-products such as ethanol. Here, we selected five Kluyveromyces yeast inoculated into three different types of whey substrates, cheddar sweet whey, cream cheese acid whey, and yogurt acid whey that could be used to convert lactose into ethanol. We demonstrate that differences exist in ethanol production across different whey substrates inoculated with Kluyveromyces yeast. In sweet whey, K. lactis, K. lactis Y-1205 and K. lactis Y-1564 were the highest ethanol producing strains. The highest amount of ethanol produced was 24.85 ± 3.5 g/L achieved by Y-1564 in sweet whey (96.8% efficiency). K. lactis Y-1205 produced 22.39 ± 5.6 g/L ethanol in yogurt acid whey. In cream cheese acid whey, K. lactis strains produced significantly higher ethanol levels compared to S. cerevisiae and K. marxianus (p < 0.05). Outcomes from this study could provide a simple and cheap solution for small-to medium-sized dairy processing facilities to ferment lactose in whey into ethanol using lactose-consuming yeasts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...