Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
J Pharm Sci ; 113(5): 1376-1384, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38432624

RESUMEN

Organic anion transporting polypeptide (OATP)1A2 and OATP2B1 have potential N-glycosylation sites, but their influence remains unclear. This study aimed to identify the N-glycosylation sites of OATP1A2/2B1 and investigate their impact on the expression and function of OATP1A2/2B1. Human embryonic kidney cells expressing OATP1A2 or OATP2B1 (HEK293-OATP1A2/2B1) were exposed to tunicamycin, an N-glycosylation inhibitor, and a plasma membrane fraction (PMF) Western blot assay and an estrone 3-sulfate (E3S) uptake study were conducted. HEK293-OATP1A2/OATP2B1 cell lines with mutation(s) at potential N-glycosylation sites were established, and the Western blotting and uptake study were repeated. Tunicamycin reduced the PMF levels and E3S uptake of OATP1A2/OATP2B1. The Asn124Gln, Asn135Gln, and Asn492Gln mutations in OATP1A2 and Asn176Gln and Asn538Gln mutations in OATP2B1 reduced the molecular weights of the OATP molecules and their PMF levels. The PMF levels of OATP1A2 Asn124/135Gln, OATP1A2 Asn124/135/492Gln, and OATP2B1 Asn176/538Gln were further reduced. The maximum transport velocities of OATP1A2 Asn124Gln, OATP1A2 Asn135Gln, and OATP2B1 Asn176/538Gln were markedly reduced to 10 %, 4 %, and 10 % of the wild-type level, respectively. In conclusion, the N-glycans at Asn124 and Asn135 of OATP1A2 and those at Asn176 and Asn538 of OATP2B1 are essential for the plasma membrane expression of these molecules and also affect their transport function.


Asunto(s)
Transportadores de Anión Orgánico , Humanos , Transporte Biológico , Estrona/metabolismo , Glicosilación , Células HEK293 , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Tunicamicina/metabolismo
2.
Biol Pharm Bull ; 46(12): 1745-1752, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044133

RESUMEN

Jabara juice and its component narirutin inhibit the activity of organic anion-transporting polypeptides (OATPs) 1A2 and OATP2B1, which are considered to play significant roles in the intestinal absorption of fexofenadine. In this study, we investigated the effects of jabara juice on the intestinal absorption of fexofenadine in mice and the inhibitory effects of jabara juice and narirutin on the permeation of fexofenadine using Caco-2 cell monolayers and LLC-GA5-COL300 cell monolayers. In the in vivo study, the area under the plasma concentration-time curve (AUC) of fexofenadine in mice was increased 1.8-fold by jabara juice. In the permeation study, 5% jabara juice significantly decreased the efflux ratio (ER) of fexofenadine for Caco-2 monolayers. Furthermore, the ERs of fexofenadine and digoxin, which is a typical substrate of P-glycoprotein (P-gp), for LLC-GA5-COL300 cell monolayers were decreased in a concentration-dependent manner by jabara juice extract, suggesting that jabara juice may increase the intestinal absorption of fexofenadine by inhibiting P-gp, rather than by narirutin inhibiting OATPs. The present study showed that jabara juice increases the intestinal absorption of fexofenadine both in vivo and in vitro. The intestinal absorption of fexofenadine may be altered by the co-administration of jabara juice in the clinical setting.


Asunto(s)
Interacciones Alimento-Droga , Transportadores de Anión Orgánico , Humanos , Ratones , Animales , Células CACO-2 , Terfenadina , Alimentos , Transportadores de Anión Orgánico/metabolismo , Absorción Intestinal
3.
J Pharmacol Sci ; 153(3): 153-160, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37770156

RESUMEN

Transporter-mediated clearance is determined by two factors, its single-molecule clearance, and expression level. However, no reliable method has been developed to evaluate them separately. This study aimed to develop a reliable method for evaluating the single-molecule activity of membrane transporters, such as organic anion transporting polypeptide (OATP) 2B1. HEK293 cells that co-expressed large conductance calcium-activated potassium (BK) channel and OATP2B1 were established and used for the following experiments. i) BK channel-mediated whole-cell conductance was measured using patch-clamp technique and divided by its unitary conductance to estimate the number of channels on plasma membrane (QI). ii) Using plasma membrane fraction, quantitative targeted absolute proteomics determined the stoichiometric ratio (ρ) of OATP2B1 to BK channel. iii) The uptake of estrone 3-sulfate was evaluated to calculate the Michaelis constant and uptake clearance (CL) per cell. Single-molecule clearance (CLint) was calculated by dividing CL by QI·ρ. QI and ρ values were estimated to be 916 and 2.16, respectively, yielding CLint of 5.23 fL/min/molecule. We successfully developed a novel method to reliably measure the single-molecule activity of a transporter, which could be used to evaluate the influences of factors such as genetic variations and post-translational modifications on the intrinsic activity of transporters.

4.
Xenobiotica ; 53(5): 357-365, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37584614

RESUMEN

1. Temperature is considered to affect the activity of drug-metabolizing enzymes; however, no previous studies have compared temperature dependency among cytochrome P450 genetic variants. This study aimed to analyse warfarin 7-hydroxylation by CYP2C9 variants; omeprazole 5-hydroxylation by CYP2C19 variants; and midazolam 1-hydroxylation by CYP3A4 variants at 34 °C, 37 °C, and 40 °C.2. Compared with that seen at 37 °C, the intrinsic clearance rates (Vmax/Km) of CYP2C9.1 and .2 were decreased (76 ∼ 82%), while that of CYP2C9.3 was unchanged at 34 °C. At 40 °C, CYP2C9.1, .2, and .3 exhibited increased (121%), unchanged and decreased (87%) intrinsic clearance rates, respectively. At 34 °C, the clearance rates of CYP2C19.1A and .10 were decreased (71 ∼ 86%), that of CYP2C19.1B was unchanged, and those of CYP2C19.8 and .23 were increased (130 ∼ 134%). At 40 °C, the clearance rates of CYP2C19.1A, .1B, .10, and .23 remained unaffected, while that of CYP2C19.8 was decreased (74%). At 34 °C, the clearance rates of CYP3A4.1 and .16 were decreased (79 ∼ 84%), those of CYP3A4.2 and .7 were unchanged, and that of CYP3A4.18 was slightly increased (112%). At 40 °C, the clearance rate of CYP3A4.1 remained unaffected, while those of CYP3A4.2, .7, .16, and .18 were decreased (58 ∼ 82%).3. These findings may be clinically useful for dose optimisation in patients with hypothermia or hyperthermia.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Citocromo P-450 CYP3A , Humanos , Citocromo P-450 CYP3A/genética , Hidrocarburo de Aril Hidroxilasas/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C19/genética , Temperatura
5.
Biopharm Drug Dispos ; 44(5): 372-379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37507848

RESUMEN

Irinotecan causes severe gastrointestinal damage, which may affect the expression of intestinal transporters. However, neither the expression of peptide transporter 1 (Pept1) nor the pharmacokinetics of Pept1 substrate drugs has been investigated under irinotecan-induced gastrointestinal damage. Therefore, the present study quantitatively investigated the effects of irinotecan-induced gastrointestinal damage on the intestinal expression of Pept1 and absorption of cephalexin (CEX), a typical Pept1 substrate, in rats. Irinotecan was administered intravenously to rats for 4 days to induce gastrointestinal damage. The expression of Pept1 mRNA and the Pept1 protein in the upper, middle, and lower segments of the small intestine of irinotecan-treated rats was assessed by quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. The pharmacokinetic profile of CEX was examined after its oral or intravenous administration (10 mg/kg). In irinotecan-treated rats, ∼2-fold increases in Pept1 protein levels were observed in all three segments, whereas mRNA levels remained unchanged. The oral bioavailability of CEX significantly decreased to 76% of that in control rats. The decrease in passive diffusion caused by intestinal damage may have overcome the increase in Pept1-mediated uptake. In conclusion, irinotecan may decrease the intestinal absorption of Pept1 substrate drugs; however, it increased the expression of intestinal Pept1.


Asunto(s)
Cefalexina , Simportadores , Ratas , Animales , Cefalexina/metabolismo , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Irinotecán , Simportadores/metabolismo , ARN Mensajero/metabolismo , Absorción Intestinal
6.
Drug Metab Pharmacokinet ; 47: 100470, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36116173

RESUMEN

Little is known about the influence of non-synonymous genetic variations in the organic anion-transporting polypeptide (OATP) 1A2 on the transport kinetics of its substrate fexofenadine. Moreover, the pH-dependency of fexofenadine uptake also remains unclear. This study aimed to evaluate the effects of genetic variants (Ile13Thr, Asn128Tyr, Glu172Asp, Ala187Thr, and Thr668Ser) on the OATP1A2-mediated uptake of fexofenadine at pH 6.3 and 7.4 and compare the pH dependency of OATP1A2-mediated uptake of fexofenadine and estrone 3-sulfate. The uptake clearances of 0.3 µM and 300 µM fexofenadine were compared with those of 0.3 µM and 300 µM estrone 3-sulfate at pH 6.3 and 7.4. Among the six variants examined, the Thr668Ser variant showed the highest fexofenadine uptake clearance (Vmax/Km); i.e., 4.53- and 6.28-fold higher uptake clearance than the wild type at pH 6.3 and 7.4, respectively. All variants exhibited significantly higher fexofenadine uptake at pH 6.3 than at pH 7.4. Compared with estrone 3-sulfate uptake, the uptake of 0.3 µM fexofenadine was less sensitive to pH. Our findings suggest that genetic variations in OATP1A2 may lead to altered intestinal absorption of fexofenadine, such as increased absorption in subjects bearing the Thr668Ser variant, which showed higher uptake activity.


Asunto(s)
Estrona , Transportadores de Anión Orgánico , Humanos , Terfenadina , Transportadores de Anión Orgánico/genética , Concentración de Iones de Hidrógeno , Sulfatos
7.
Drug Metab Pharmacokinet ; 46: 100464, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35841754

RESUMEN

Non-synonymous genetic variants of organic anion-transporting polypeptide (OATP) 1A2 with altered transport activity have been identified. Naringin and narirutin, which are found in grapefruit, and their aglycon naringenin inhibit OATP1A2. However, their inhibitory effects on OATP1A2 variants have not been investigated, nor has the influence of their molecular structure, such as the number of sugar moieties, on their inhibitory potency. This study aimed to investigate the inhibitory effects of naringenin, its monosaccharide glycoside prunin, and its disaccharide glycosides naringin and narirutin on fexofenadine (FEX) uptake by OATP1A2 variants (Ile13Thr, Asn128Tyr, Ala187Thr, and Thr668Ser). Naringin, narirutin, and prunin inhibited FEX (0.3 µM) uptake by all of the examined OATP1A2 variants in a concentration-dependent manner. Compared with those for the wild type, the inhibition constants (Ki) of naringin, narirutin, and prunin for the Ala187Thr variant were significantly increased by 3.36-fold, 7.55-fold, and 10.6-fold, respectively. Naringenin inhibited all of the OATP1A2 variants, except Ala187Thr, concentration-dependently. The order of inhibitory potency was as follows for all variants: aglycone > monosaccharide glycoside > disaccharide glycosides. These results suggest that the Ala187Thr variant is less vulnerable to inhibition by naringenin and its glycosides. Moreover, greater glycosylation of naringenin reduces its inhibitory potency against OATP1A2.


Asunto(s)
Flavanonas , Transportadores de Anión Orgánico , Glicósidos/farmacología , Frutas , Flavanonas/farmacología , Transportadores de Anión Orgánico/genética , Disacáridos , Péptidos , Monosacáridos , Aniones
8.
Int J Clin Pharmacol Ther ; 60(5): 217-224, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35343429

RESUMEN

OBJECTIVE: The fraction of drug absorbed (Fa) from the intestine is an important parameter to characterize the pharmacokinetics of a drug. We aimed to search for an experimental system that provides the best parameters for estimating the effective permeability (Peff) used for the bottom-up prediction of Fa. MATERIALS AND METHODS: The absorption kinetics of 12 passively absorbed drugs were simulated by a compartment absorption transit (CAT) model using absorption parameters from four different experimental systems: human intestinal epithelial cell (HIEC) monolayer, Caco-2 monolayer, parallel artificial membrane permeability assay (PAMPA), and in situ rat intestinal perfusion. All absorption parameters were obtained from the literature. The in vitro apparent permeability coefficient (Papp) and rat in situ Peff were converted to human Peff using a bottom-up approach for each region, based on the morphological features of the human intestine. The simulated Fa values were compared to the respective observed values. Furthermore, plasma concentration profiles of the drugs were simulated by convolution using the time-course of the absorption rate simulated using the Peff values calculated from the HIEC Papp. RESULTS: The Fa values were best predicted by using the Peff values calculated from HEIC, within a 1.3-fold range of observed Fa in 11 out of 12 drugs. The simulated Cmax values of pharmacokinetic simulation using HIEC Papp fell within a 1.5-fold range of observed values for all the drugs examined. CONCLUSION: The HIEC monolayer was identified as the most suitable permeation parameter for estimating Fa and Cmax using a morphological feature-based bottom-up approach.


Asunto(s)
Escamas de Animales , Absorción Intestinal , Animales , Células CACO-2 , Tracto Gastrointestinal , Humanos , Intestinos , Membranas Artificiales , Ratas
9.
J Agric Food Chem ; 70(10): 3310-3320, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35230114

RESUMEN

Organic anion-transporting polypeptide (OATP) 1A2 and OATP2B1 mediate the intestinal absorption of drugs. This study aimed to identify fruit juices or fruit juice components that inhibit OATPs and assess the risk of associated food-drug interactions. Inhibitory potency was assessed by examining the uptake of [3H]estrone 3-sulfate and [3H]fexofenadine into HEK293 cells expressing OATP1A2 or OATP2B1. In vivo experiments were conducted using mice to evaluate the effects of cranberry juice on the pharmacokinetics of orally administered fexofenadine. Of eight examined fruit juices, cranberry juice inhibited the functions of both OATPs most potently. Avicularin, a component of cranberry juice, was identified as a novel OATP inhibitor. It exhibited IC50 values of 9.0 and 37 µM for the inhibition of estrone 3-sulfate uptake mediated by OATP1A2 and OATP2B1, respectively. A pharmacokinetic experiment revealed that fexofenadine exposure was significantly reduced (by 50%) by cranberry juice. Cranberry juice may cause drug interactions with OATP substrates.


Asunto(s)
Vaccinium macrocarpon , Animales , Bebidas , Flavonoides , Interacciones Alimento-Droga , Células HEK293 , Humanos , Ratones
10.
Eur J Clin Pharmacol ; 78(4): 613-621, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35039908

RESUMEN

PURPOSE: Aprepitant is used with dexamethasone and 5-HT3 receptor antagonists as an antiemetic treatment for chemotherapy, including cisplatin. Aprepitant is a substrate of cytochrome P450 (CYP) 3A4 and is known to cause its inhibition and induction. In addition, dexamethasone is a CYP3A4 substrate that induces CYP3A4 and CYP3A5 expression. In this study, we aimed to quantitatively evaluate the profile of CYP3A activity using its endogenous markers in non-small cell lung cancer patients receiving a standard cisplatin regimen with antiemetics, including aprepitant. METHODS: Urinary 11ß-hydroxytestosterone (11ß-OHT)/testosterone concentration ratio and plasma 4ß-hydroxycholesterol (4ß-OHC) concentrations were measured before and after cisplatin treatment (days 1, 4, and 8). CYP3A5 was genotyped, and plasma aprepitant concentrations were measured on day 4 to examine its influence on CYP3A endogenous markers. RESULTS: The urinary 11ß-OHT/testosterone concentration ratio in the 35 patients included in this study increased by 2.65-fold and 1.21-fold on days 4 and 8 compared with day 1, respectively. Their plasma 4ß-OHC concentration increased by 1.46-fold and 1.66-fold, respectively. The mean plasma aprepitant concentration on day 4 was 1,451 ng/mL, which is far lower than its inhibitory constant. The allele frequencies of CYP3A5*1 and CYP3A5*3 were 0.229 and 0.771, respectively. In patients with the CYP3A5*1 allele, the plasma 4ß-OHC concentration was significantly lower at baseline but more potently increased with chemotherapy. CONCLUSION: CYP3A activity was significantly induced from day 4 to day 8 in patients receiving cisplatin and three antiemetic drugs.


Asunto(s)
Antieméticos , Aprepitant , Carcinoma de Pulmón de Células no Pequeñas , Cisplatino , Citocromo P-450 CYP3A , Dexametasona , Neoplasias Pulmonares , Antieméticos/uso terapéutico , Aprepitant/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Cisplatino/efectos adversos , Cisplatino/uso terapéutico , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Dexametasona/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Vómitos/inducido químicamente , Vómitos/prevención & control
11.
Drug Metab Pharmacokinet ; 42: 100429, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34979453

RESUMEN

Some grapefruit juice (GFJ) ingredients and resveratrol, a fruit-derived phytoalexin, are known to inhibit cytochrome P450 (CYP) 2C9. However, their inhibition modes and detailed inhibition kinetics remain undetermined. This study aimed to investigate the inhibitory effects of two GFJ ingredients, bergamottin (BG) and dihydroxybergamottin (DHB), and resveratrol on CYP2C9 activity in vitro. DHB inhibited CYP2C9 activity, as assessed by warfarin 7-hydroxylation, in a preincubation time-dependent manner (i.e., mechanism-based inhibition; MBI), in the same manner as CYP2C19 and CYP3A4. The maximal inactivation rate (kinact,max) was 0.0638 min-1 and 0.12- and 0.26-fold of that for CYP2C19 and CYP3A4, respectively. BG showed both MBI and time-independent competitive inhibition. Resveratrol showed non-competitive inhibition with an inhibition constant (Ki) of 3.64 µM. Unlike the inhibition of CYP2C19 and CYP3A4, resveratrol did not induce MBI. These findings are important for estimating the risk of drug interactions between CYP2C9 substrates and some beverages. (146 words).


Asunto(s)
Bebidas , Citocromo P-450 CYP3A , Citocromo P-450 CYP2C9 , Furocumarinas , Cinética , Resveratrol/farmacología
12.
Drug Metab Pharmacokinet ; 41: 100416, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34619547

RESUMEN

Organic anion transporting polypeptide (OATP) 2B1 is expressed in the intestine and liver, and OATP2B1-mediated transport of estrone 3-sulfate is pH-dependent and consists of: the high-affinity component (Hc) and low-affinity component (Lc). This study aimed to evaluate the influence of pH on the transport kinetics of each component, along with the inhibitory nature of ten OATP2B1 inhibitors. The Michaelis constants (Km) were 4-fold and 1.5-fold lower at pH 6.3 than at pH 7.4, for Hc and Lc respectively. The inhibitory potencies of diclofenac, indomethacin, and ibuprofen towards Hc were 1.5-4.3 fold lower at pH 6.3 than at pH 7.4. Contrastingly, inhibitory potencies towards Lc were 9.0-52 fold lower at pH 7.4. Similarly, the inhibitory effect of naproxen was stronger towards Hc at pH 6.3 and towards Lc at pH 7.4. On the other hand, celecoxib selectively inhibited Lc transport at pH 7.4. Rifampicin inhibited both components at pH 6.3 and 7.4 to a similar extent, while bromosulphophthalein, naringin, and gefitinib selectively inhibited Hc irrespective of pH. Fexofenadine inhibited neither component. In conclusion, the transport affinities of both Hc and Lc were enhanced under acidic conditions. The influence of pH on the inhibitory potency towards each component varied among the inhibitors.


Asunto(s)
Transportadores de Anión Orgánico , Transporte Biológico , Estrona , Concentración de Iones de Hidrógeno , Cinética , Transportadores de Anión Orgánico/metabolismo , Sulfobromoftaleína
13.
Int J Clin Pharmacol Ther ; 59(12): 745-752, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34542401

RESUMEN

OBJECTIVES: The present study aimed to evaluate the effects of CYP3A4 genetic variation on the kinetics of mechanism-based inhibition (MBI) of both inhibitors using midazolam as a substrate for comparison with our previous study, as midazolam and testosterone have different binding sites. BACKGROUND: The genetic variation of cytochrome P450 (CYP) 3A4 affects MBI, expressed as the maximum inactivation rate constant (kinact,max) and the inhibitor concentration required to achieve half-maximal inactivation (KI). We previously showed, using testosterone as a substrate, that the MBI kinetics of erythromycin and clarithromycin differ among CYP3A4 variants. MATERIALS AND METHODS: Midazolam 1'-hydroxylation inactivation profiles of erythromycin and clarithromycin were assessed using recombinant CYP3A4.1, .2, .7, .16, and .18 expressed in Escherichia coli. MBI parameters were calculated from changes in the inactivation rate constant (Δkobs) by the inhibitors. RESULTS: Both inhibitors increased Δkobs value in a concentration- and preincubation time-dependent manner, and MBI kinetics differed among variants. Trends of differences in MBI parameters among variants were similar to those assessed using testosterone as a substrate; KI decreased for CYP3A4.7, and kinact,max decreased for CYP3A4.2, .7, and .16. CONCLUSION: The genetic variation of recombinant CYP3A4 affects the MBI profile of CYP3A4 by erythromycin and clarithromycin, while the influence of genetic variation was similarly observed regardless of substrates. Our findings are of clinical relevance because the residual enzyme activity of CYP3A4 in the presence of inhibitor was estimated to vary among genetic variants.


Asunto(s)
Citocromo P-450 CYP3A , Midazolam , Antibacterianos , Citocromo P-450 CYP3A/genética , Humanos , Macrólidos , Testosterona
14.
J Pharm Health Care Sci ; 7(1): 24, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193275

RESUMEN

BACKGROUND: Irinotecan (CPT-11) is clinically known to cause severe diarrhea and gastrointestinal damage. Recently, we have reported that CPT-11-induced gastrointestinal damage is associated with the upregulation of intestinal P-glycoprotein (P-gp) expression and decreased absorption of its substrate, dabigatran etexilate (DABE), using a rat model. However, the P-gp activity or its contribution to the decreased absorption remains unclear. The aim of this study was to quantitatively evaluate how P-gp activity changes in rats with CPT-11-induced gastrointestinal damage, as assessed by the absorption of digoxin (DGX), a typical P-gp substrate. METHODS: Male Sprague-Dawley rats were intravenously administered CPT-11 at a dose of 60 mg/kg/day for 4 days to induce gastrointestinal damage. Then, the rats were administered DGX orally (40 µg/kg), after some of them were orally administered clarithromycin (CAM; 10 mg/kg), a P-gp inhibitor. DGX (30 µg/kg) was administered intravenously to determine the bioavailability (BA). The rats' DGX plasma concentration profiles were determined using LC-MS/MS. RESULTS: CPT-11 treatment decreased the maximum concentration (Cmax) and area under the plasma concentration-time curve (AUCpo) of DGX, which does not contradict to the DABE study. Although in the CPT-11-treated group the BA of DGX was significantly decreased to 40% of the control value, CAM did not affect the BA of DGX in the CPT-11-treated group. CONCLUSIONS: Increased P-gp expression in rats with CPT-11-induced gastrointestinal damage is not necessarily associated with increased P-gp activity or contribution to the drug absorption in vivo. The decreased DGX absorption observed in this study might be attributable to other factors, such as a reduction in the absorptive surface area of the gastrointestinal tract.

15.
Drug Metab Pharmacokinet ; 38: 100392, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33878681

RESUMEN

The absolute oral bioavailability (BA) of drugs are yet to be determined, and intravenous pharmacokinetic studies are currently considered indispensable for determining the BA values of oral drugs. The aim of this study was to develop and validate a novel approach to estimating BA values without intravenous pharmacokinetic data. Based on the drug inclusion criteria, such as exhibiting a urinary recovery rate of (Ru) of ≥20% in a clinical study, 13 drugs were included in the present study, and pharmacokinetic data for them were collected from the literature. The fraction excreted unchanged into urine (fe) was calculated for healthy subjects by dividing the Ru value by the total recovery rate. The contribution of renal excretion to total clearance from the systemic circulation (Rren) was estimated by subjecting oral clearance and creatinine clearance to regression in subjects with normal and impaired renal function. BA was estimated as fe/Rren and compared with the observed BA (BAobs). The predicted BA values for 9 drugs fell within ±20% of their BAobs. The examined approach makes it possible to estimate BA values for drugs with mean renal excretion values in healthy subjects and oral clearance in subjects with various renal function, without intravenous pharmacokinetic data.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/metabolismo , Administración Intravenosa/métodos , Administración Oral , Disponibilidad Biológica , Humanos , Inyecciones Intravenosas/métodos , Tasa de Depuración Metabólica/efectos de los fármacos
16.
Drug Metab Pharmacokinet ; 38: 100384, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33826998

RESUMEN

Cytochrome P450 (CYP) 3A4 is one of the major drug-metabolizing enzymes. Genetic variants of CYP3A4 with altered activity are one of the factors responsible for interindividual differences in drug metabolism. Azole antifungals inhibit CYP3A4 to cause clinically significant drug-drug interactions. In the present quantitative study, we investigated the inhibitory effects of three azole antifungals (ketoconazole, voriconazole, and fluconazole) on testosterone metabolism by recombinant CYP3A4 genetic variants (CYP3A4.1 (WT), CYP3A4.2, CYP3A4.7, CYP3A4.16, and CYP3A4.18) and compared them with those previously reported for itraconazole. The inhibition constants (Ki) of ketoconazole, voriconazole, and fluconazole for rCYP3A4.1 were 3.6 nM, 3.2 µM, and 16.1 µM, respectively. The Ki values of these azoles for rCYP3A4.16 were 13.9-, 13.6-, and 6.2-fold higher than those for rCYP3A4.1, respectively, whereas the Ki value of itraconazole for rCYP3A4.16 was 0.54-fold of that for rCYP3A4.1. The other genetic variants had similar effects on the Ki values of the three azoles, whereas a very different pattern was seen for itraconazole. In conclusion, itraconazole has unique characteristics that are distinct from those shared by the other azole anti-fungal drugs ketoconazole, voriconazole, and fluconazole with regard to the influence of genetic variations on the inhibition of CYP3A4.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Citocromo P-450 CYP3A/genética , Variación Genética/efectos de los fármacos , Interacciones Farmacológicas/genética , Humanos
17.
Int J Clin Pharmacol Ther ; 59(4): 328-332, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33355084

RESUMEN

OBJECTIVE: To report a case of second-degree atrioventricular block associated with concomitant use of aprepitant and amlodipine. CASE: A 73-year-old man with lung cancer was treated with aprepitant for prophylactic use for the prevention of nausea and vomiting, concomitantly with cisplatin, gemcitabine, and an investigational drug (anti-epidermal growth factor receptor monoclonal antibody). He was diagnosed with first-degree atrioventricular block and was taking amlodipine for hypertension. During the first cycle of chemotherapy, 5 days after the start of aprepitant, he experienced Wenckebach second-degree atrioventricular block (Mobitz type I), and amlodipine was discontinued. After day 6, the atrioventricular block was not shown. According to the Naranjo adverse drug reaction scale, a score of 7 was obtained (causality: probable). In addition, using the Drug Interaction Probability Scale, a score of 6 was obtained (causality: probable). CONCLUSION: The drug-drug interaction between aprepitant and amlodipine was considered to have deteriorated his atrioventricular block, conceivably due to the inhibition of cytochrome P450 (CYP) 3A-mediated metabolism of amlodipine by aprepitant.


Asunto(s)
Antieméticos , Bloqueo Atrioventricular , Neoplasias Pulmonares , Anciano , Amlodipino/efectos adversos , Aprepitant/uso terapéutico , Bloqueo Atrioventricular/inducido químicamente , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Masculino , Morfolinas/efectos adversos , Vómitos
18.
Int J Clin Pharmacol Ther ; 59(3): 231-238, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33191904

RESUMEN

OBJECTIVE: The contribution ratios (CR) of metabolic enzymes to the systemic clearance of a drug can be estimated from in vitro studies. Another feasible approach is to calculate them based on the increase in the area under the time-concentration curve (AUC) caused by the co-administration of a potent and selective inhibitor in a clinical drug-drug interaction (DDI) study. However, some factors, such as the inhibitory potency of the inhibitor and the inhibition of first-pass metabolism, might affect the estimation of CR based on clinical DDI studies. We aimed to validate the accuracy of the DDI-based estimation of CR using an in silico approach. MATERIALS AND METHODS: An in silico DDI study was conducted using a population-based physiological pharmacokinetic simulator to estimate the CR of cytochrome P450 (CYP)3A4 for zolpidem, sildenafil, omeprazole, triazolam, and repaglinide. The ratio of the AUC value seen in the presence of an inhibitor (ketoconazole or itraconazole) to that observed in the absence of the inhibitor (AUC ratio) was also calculated. The CR for CYP3A4 obtained using the simulator (CRdef) were compared with those calculated from the AUC ratio (CRest). RESULTS: When ketoconazole was used, good correlations between the CRest and CRdef were obtained for all examined substrates (inconsistencies were seen in < 10% of subjects). CR estimates derived from the AUC ratio were found to be accurate. Some underestimation was observed, possibly due to incomplete inhibition, and some overestimation caused by extensive first-pass metabolism was noted. CONCLUSION: This study verified that CR obtained from AUC ratios in DDI studies are quite reliable.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A , Citocromo P-450 CYP3A , Área Bajo la Curva , Simulación por Computador , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Humanos , Cetoconazol
19.
J Agric Food Chem ; 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33210911

RESUMEN

Organic anion-transporting polypeptides (OATPs) 1A2 and OATP2B1 are expressed in the small intestine and are involved in drug absorption. We identified narirutin, which is present in grapefruit juice, as a novel OATP inhibitor. The citrus fruit jabara also contains high levels of narirutin; therefore, we investigated the inhibitory potency of jabara juice against OATPs. The inhibitory effects of various related compounds on the transport activity of OATPs were evaluated using OATP-expressing HEK293 cells. The IC50 values of narirutin for OATP1A2- and OATP2B1-mediated transport were 22.6 and 18.2 µM, respectively. Other flavanone derivatives from grapefruit juice also inhibited OATP1A2/OATP2B1-mediated transport (order of inhibitory potency: naringenin > narirutin > naringin). Five percent jabara juice significantly inhibited OATP1A2- and OATP2B1-mediated transport by 67 ± 11 and 81 ± 5.5%, respectively (p < 0.05). Based on their inhibitory potency and levels in grapefruit juice, the inhibition of OATPs by grapefruit juice is attributable to both naringin and narirutin. Citrus × jabara, which contains narirutin, potently inhibits OATP-mediated transport.

20.
Eur J Clin Pharmacol ; 76(11): 1537, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32936338

RESUMEN

Figure 3 image was inadvertently removed from the original article. The original article has been corrected.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...