Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 6(29): eabb8570, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32832647

RESUMEN

Development of p-type transparent conducting materials has been a challenging issue. The known p-type transparent conductors unsatisfy both of high transparency and high conductivity nor exhibit superconductivity. Here, we report on epitaxial synthesis, excellent p-type transparent conductivity, and two-dimensional superconductivity of Li1-x NbO2. The LiNbO2 epitaxial films with NbO2 sheets parallel to (111) plane of cubic MgAl2O4 substrates were stabilized by heating amorphous films. The hole doping associated with Li+ ion deintercalation triggered superconductivity below 4.2 kelvin. Optical measurements revealed that the averaged transmittance to the visible light of ~100-nanometer-thick Li1-x NbO2 was ~77%, despite the large number of hole carriers exceeding 1022 per cubic centimeter. These results indicate that Li1-x NbO2 is a previously unknown p-type transparent superconductor, in which strongly correlated electrons at the largely isolated Nb 4d z2 band play an important role for the high transparency.

2.
ACS Appl Mater Interfaces ; 9(12): 10349-10354, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28287690

RESUMEN

We analyze the effects of microwave applied in the process of photoelectrochemical deposition of cobalt-based cocatalysts, Co-Pi, onto well-orientated flat α-Fe2O3 thin films, which were fabricated by pulsed laser deposition. As compared with conventional heating, microwave significantly affects the morphology, chemical composition, and photocatalytic activity of Co-Pi/α-Fe2O3 composite. A significant enhancement in photocurrent related to photocatalytic water oxidation is achieved by the Co-Pi catalyst prepared under microwave irradiation. This, along with its interfacial electron-transfer properties, is studied by means of electrochemical impedance spectroscopy.

3.
Nat Commun ; 1: 106, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21045824

RESUMEN

Coaxing correlated materials to the proximity of the insulator-metal transition region, where electronic wavefunctions transform from localized to itinerant, is currently the subject of intensive research because of the hopes it raises for technological applications and also for its fundamental scientific significance. In general, this tuning is achieved by either chemical doping to introduce charge carriers, or external stimuli to lower the ratio of Coulomb repulsion to bandwidth. In this study, we combine experiment and theory to show that the transition from well-localized insulating states to metallicity in a Ruddlesden-Popper series, La(0.5)Sr(n+1-0.5)Ti(n)O(3n+1), is driven by intercalating an intrinsically insulating SrTiO(3) unit, in structural terms, by dimensionality n. This unconventional strategy, which can be understood upon a complex interplay between electron-phonon coupling and electron correlations, opens up a new avenue to obtain metallicity or even superconductivity in oxide superlattices that are normally expected to be insulators.

4.
J Am Chem Soc ; 132(19): 6672-8, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20459143

RESUMEN

The electric-double-layer (EDL) formed at liquid/solid interfaces provides a broad and interdisciplinary attraction in terms of electrochemistry, photochemistry, catalysts, energy storage, and electronics. Especially in recent years, much effort has been devoted to the fundamental understanding and practical applications of transistor configurations with EDLs because of their ability for high-density charge accumulation. However, to exploit additional new functionalities of such an emerging interface is not only of great importance but also a huge challenge. Here, we demonstrate that, by introducing protic ionic liquid (PIL) as the gate dielectric for ZnO EDL transistors (EDLTs), small and chemically active ions, such as protons and hydroxyls, can serve as an adsorption medium to extend the interfacial functionalities of EDLTs. By selectively driving the H(+) or OH(-) groups onto ZnO channel surfaces with an electric field, the charged adsorbates interact with surface atoms in different adsorption mechanisms, showing remarkable variations in electron transport and providing a possibility for the recognition of surface polarity. Most significantly, the large hysteresis in the transfer characteristics of PIL-EDLTs makes the device available and promising for nonvolatile proton memory devices via surface hydrogenation and dehydrogenation processes. Such a finding provides us with new opportunities to understand liquid/solid heterogeneous interface phenomena and to extend the practical functions of EDLs through controllable interfacial interaction.

5.
Cryst Growth Des ; 10(4): 1725-1729, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20383295

RESUMEN

The epitaxial structures of SrFeO(2.5) films grown on SrTiO(3) (001) and (111) substrates by PLD are reported. A layer-by-layer growth mode was achieved in the initial stage on both substrates. The films were stabilized with a monoclinic structure, where we identified the in-plane domain structures and orientation relationship. Our study presents a guide to control the heteroepitaxy of (111)-oriented noncubic perovskites.

7.
J Comb Chem ; 10(2): 175-8, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18278874

RESUMEN

A high-throughput method has been developed to evaluate the Seebeck coefficient and electrical resistivity of combinatorial thin-film libraries of thermoelectric materials from room temperature to 673 K. Thin-film samples several millimeters in size were deposited on an integrated Al2O3 substrate with embedded lead wires and local heaters for measurement of the thermopower under a controlled temperature gradient. An infrared camera was used for real-time observation of the temperature difference Delta T between two electrical contacts on the sample to obtain the Seebeck coefficient. The Seebeck coefficient and electrical resistivity of constantan thin films were shown to be almost identical to standard data for bulk constantan. High-throughput screening was demonstrated for a thermoelectric Mg-Si-Ge combinatorial library.


Asunto(s)
Técnicas Químicas Combinatorias , Electricidad
8.
Nature ; 430(7000): 657-61, 2004 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15295595

RESUMEN

At the heart of modern oxide chemistry lies the recognition that beneficial (as well as deleterious) materials properties can be obtained by deliberate deviations of oxygen atom occupancy from the ideal stoichiometry. Conversely, the capability to control and confine oxygen vacancies will be important to realize the full potential of perovskite ferroelectric materials, varistors and field-effect devices. In transition metal oxides, oxygen vacancies are generally electron donors, and in strontium titanate (SrTiO3) thin films, oxygen vacancies (unlike impurity dopants) are particularly important because they tend to retain high carrier mobilities, even at high carrier densities. Here we report the successful fabrication, using a pulsed laser deposition technique, of SrTiO3 superlattice films with oxygen doping profiles that exhibit subnanometre abruptness. We profile the vacancy concentrations on an atomic scale using annular-dark-field electron microscopy and core-level spectroscopy, and demonstrate absolute detection sensitivities of one to four oxygen vacancies. Our findings open a pathway to the microscopic study of individual vacancies and their clustering, not only in oxides, but in crystalline materials more generally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA