Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 42, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898480

RESUMEN

BACKGROUND: γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation. RESULTS: We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h. CONCLUSION: The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.


Asunto(s)
Arabidopsis , Biodegradación Ambiental , Hexaclorociclohexano , Plantas Modificadas Genéticamente , Sphingomonadaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Hexaclorociclohexano/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Sphingomonadaceae/enzimología , Contaminantes del Suelo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas/genética , Liasas/metabolismo
2.
Sci Rep ; 14(1): 12759, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834771

RESUMEN

Exposure to N2O5 generated by plasma technology activates immunity in Arabidopsis through tryptophan metabolites. However, little is known about the effects of N2O5 exposure on other plant species. Sweet basil synthesizes many valuable secondary metabolites in its leaves. Therefore, metabolomic analyses were performed at three different exposure levels [9.7 (Ex1), 19.4 (Ex2) and 29.1 (Ex3) µmol] to assess the effects of N2O5 on basil leaves. As a result, cinnamaldehyde and phenolic acids increased with increasing doses. Certain flavonoids, columbianetin, and caryophyllene oxide increased with lower Ex1 exposure, cineole and methyl eugenol increased with moderate Ex2 exposure and L-glutathione GSH also increased with higher Ex3 exposure. Furthermore, gene expression analysis by quantitative RT-PCR showed that certain genes involved in the syntheses of secondary metabolites and jasmonic acid were significantly up-regulated early after N2O5 exposure. These results suggest that N2O5 exposure increases several valuable secondary metabolites in sweet basil leaves via plant defense responses in a controllable system.


Asunto(s)
Ocimum basilicum , Hojas de la Planta , Metabolismo Secundario , Ocimum basilicum/metabolismo , Ocimum basilicum/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Metabolismo Secundario/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Metabolómica/métodos , Flavonoides/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Oxilipinas/metabolismo
3.
Sci Rep ; 14(1): 2030, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263346

RESUMEN

The development and characterization of a new enzyme reaction contribute to advancements in modern biotechnology. Here, we report a novel CIS (clamping-mediated incorporation of single-stranded DNA with concomitant DNA synthesis) reaction catalyzed by Taq polymerase. In the reaction, a single-stranded DNA (ssDNA) with 3' Cs is attached with a preformed 3' G-tail of double-stranded DNA (dsDNA); DNA syntheses starting from both 3' ends result in the incorporation of ssDNA. A 3' G-tail length of 3 nucleotides adequately supports this reaction, indicating that Taq polymerase can clump short Watson-Crick base pairs as short as three pairs and use them to initiate DNA polymerization. The reverse transcriptase from Molony murine leukemia virus catalyzes strand displacement synthesis and produces flapped-end DNA, whereas the reaction by Taq polymerase involves the nick translation. These new reaction properties may be beneficial for the development of new molecular tools applicable in various fields. Apart from its CIS reaction activity, we also report that Taq polymerase has the undesirable characteristic of removing 5' fluorescent labels from dsDNA. This characteristic may have compromised various experiments involving the preparation of fluorescently-labeled dsDNA by PCR for a long time.


Asunto(s)
Replicación del ADN , ADN de Cadena Simple , Ratones , Animales , Polimerasa Taq , Constricción , Biotecnología
4.
Biosci Biotechnol Biochem ; 88(3): 305-315, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38192044

RESUMEN

Acidovorax sp. KKS102 is a beta-proteobacterium capable of degrading polychlorinated biphenyls (PCBs). In this study, we examined its growth in liquid nutrient broth supplemented with different carbon sources. KKS102 had at least 3 distinct metabolic phases designated as metabolic phases 1-3, with phase 2 having 2 sub-phases. For example, succinate, fumarate, and glutamate, known to repress the PCB/biphenyl catabolic operon in KKS102, were utilized in phase 1, while acetate, arabinose, and glycerol in phase 2, and glucose and mannose in phase 3. We also showed that the BphQ response regulator mediating catabolite control in KKS102, whose expression level increased moderately through the growth, plays important roles in carbon metabolism in phases 2 and 3. Our study elucidates the hierarchical growth of KKS102 in nutrient-rich media. This insight is crucial for studies exploiting microbial biodegradation capabilities and advancing studies for catabolite regulation mechanisms.


Asunto(s)
Comamonadaceae , Bifenilos Policlorados , Bifenilos Policlorados/metabolismo , Comamonadaceae/metabolismo , Compuestos de Bifenilo , Biodegradación Ambiental , Carbono/metabolismo
5.
Nat Commun ; 14(1): 7850, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38040781

RESUMEN

The Kondo effect between localized f-electrons and conductive carriers leads to exotic physical phenomena. Among them, heavy-fermion (HF) systems, in which massive effective carriers appear due to the Kondo effect, have fascinated many researchers. Dimensionality is also an important characteristic of the HF system, especially because it is strongly related to quantum criticality. However, the realization of the perfect two-dimensional (2D) HF materials is still a challenging topic. Here, we report the surface electronic structure of the monoatomic-layer Kondo lattice YbCu2 on a Cu(111) surface observed by synchrotron-based angle-resolved photoemission spectroscopy. The 2D conducting band and the Yb 4f state, located very close to the Fermi level, are observed. These bands are hybridized at low-temperature, forming the 2D HF state, with an evaluated coherence temperature of about 30 K. The effective mass of the 2D state is enhanced by a factor of 100 by the development of the HF state. Furthermore, clear evidence of the hybridization gap formation in the temperature dependence of the Kondo-resonance peak has been observed below the coherence temperature. Our study provides a new candidate as an ideal 2D HF material for understanding the Kondo effect at low dimensions.

6.
Microbiol Resour Announc ; 12(12): e0056723, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37937996

RESUMEN

Cupriavidus sp. strain TKC was isolated from a microbial community enriched with γ-hexachlorocyclohexane (γ-HCH). This strain did not show γ-HCH-degrading activity but was one of the major members of the community. Here, we present the draft genome sequence of the strain TKC with a size of 7 Mb.

7.
Biosci Biotechnol Biochem ; 88(1): 123-130, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37796901

RESUMEN

1,1,1-Trichloro-2,2-bis(4-chlorophenyl)-ethane (DDT) is the first synthetic insecticide and one of the most widely used pesticides. The use of DDT has been banned, but it remains one of the most notorious environmental pollutants around the world. In this study, we found that γ-hexachlorocyclohexane (γ-HCH) dehydrochlorinase LinA from a γ-HCH-degrading bacterium, Sphingobium japonicum UT26, converts DDT to 1,1-dichloro-2,2-bis(4-chlorophenyl)-ethylene (DDE). Because of the weak DDT degradation activity of LinA, we could not detect such activity in UT26 cells expressing LinA constitutively. However, the linA-deletion mutant of UT26 harboring a plasmid for the expression of LinA, in which LinA was expressed at a higher level than UT26, showed the DDT degradation activity. This outcome highlights the potential for constructing DDT-degrading sphingomonad cells through elevated LinA expression.


Asunto(s)
Hexaclorociclohexano , Insecticidas , Hexaclorociclohexano/metabolismo , DDT/metabolismo , Bacterias/metabolismo
8.
Nat Commun ; 13(1): 5600, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151212

RESUMEN

The topology and spin-orbital polarization of two-dimensional (2D) surface electronic states have been extensively studied in this decade. One major interest in them is their close relationship with the parities of the bulk (3D) electronic states. In this context, the surface is often regarded as a simple truncation of the bulk crystal. Here we show breakdown of the bulk-related in-plane rotation symmetry in the topological surface states (TSSs) of the Kondo insulator SmB6. Angle-resolved photoelectron spectroscopy (ARPES) performed on the vicinal SmB6(001)-p(2 × 2) surface showed that TSSs are anisotropic and that the Fermi contour lacks the fourfold rotation symmetry maintained in the bulk. This result emphasizes the important role of the surface atomic structure even in TSSs. Moreover, it suggests that the engineering of surface atomic structure could provide a new pathway to tailor various properties among TSSs, such as anisotropic surface conductivity, nesting of surface Fermi contours, or the number and position of van Hove singularities in 2D reciprocal space.

9.
Biosci Biotechnol Biochem ; 86(6): 693-703, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35425950

RESUMEN

In these days, for bacterial genome sequence determination, ultralong reads with homopolymeric troubles are used in combinations with short reads, resulting in genomic sequences with possible incorrect uniformity of repeat sequences. We have been determining complete bacterial genomic sequences based on NGS short reads and Newbler assemblage by utilizing functions implemented in 3 software GenoFinisher, AceFileViewer, and ShortReadManager without conducting additional experiments for gap closing, proving the concept that NGS short reads enclose enough information to determine complete genome sequences. Although some manual in silico tasks are to be conducted, they will ultimately be solved in a single pipeline. In this review, we describe the tools and implemented ideas that have enabled complete sequence determination solely based on short reads, which would be useful for establishing the basis for the future development of a short-read-based assembler that enables complete and accurate genome sequence determination at a lower cost.


Asunto(s)
Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos
10.
Biosci Biotechnol Biochem ; 86(6): 800-809, 2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35298590

RESUMEN

γ-Hexachlorocyclohexane (γ-HCH)-degrading strain, Sphingobium sp. TA15, was newly isolated from an experimental field soil from which the archetypal γ-HCH-degrading strain, S. japonicum UT26, was isolated previously. Comparison of the complete genome sequences of these 2 strains revealed that TA15 shares the same basic genome backbone with UT26, but also has the variable regions that are presumed to have changed either from UT26 or from a putative common ancestor. Organization and localization of lin genes of TA15 were different from those of UT26. It was inferred that transposition of IS6100 had played a crucial role in these genome rearrangements. The accumulation of toxic dead-end products in TA15 was lower than in UT26, suggesting that TA15 utilizes γ-HCH more effectively than UT26. These results suggested that genome evolution related to the γ-HCH metabolic function in the soil microbial population is ongoing.


Asunto(s)
Hexaclorociclohexano , Sphingomonadaceae , Biodegradación Ambiental , Evolución Molecular , Hexaclorociclohexano/metabolismo , Suelo , Microbiología del Suelo , Sphingomonadaceae/genética
11.
DNA Res ; 28(6)2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34677568

RESUMEN

Cyanobacteria are a diverse group of Gram-negative prokaryotes that perform oxygenic photosynthesis. Cyanobacteria have been used for research on photosynthesis and have attracted attention as a platform for biomaterial/biofuel production. Cyanobacteria are also present in almost all habitats on Earth and have extensive impacts on global ecosystems. Given their biological, economical, and ecological importance, the number of high-quality genome sequences for Cyanobacteria strains is limited. Here, we performed genome sequencing of Cyanobacteria strains in the National Institute for Environmental Studies microbial culture collection in Japan. We sequenced 28 strains that can form a heterocyst, a morphologically distinct cell that is specialized for fixing nitrogen, and 3 non-heterocystous strains. Using Illumina sequencing of paired-end and mate-pair libraries with in silico finishing, we constructed highly contiguous assemblies. We determined the phylogenetic relationship of the sequenced genome assemblies and found potential difficulties in the classification of certain heterocystous clades based on morphological observation. We also revealed a bias on the sequenced strains by the phylogenetic analysis of the 16S rRNA gene including unsequenced strains. Genome sequencing of Cyanobacteria strains deposited in worldwide culture collections will contribute to understanding the enormous genetic and phenotypic diversity within the phylum Cyanobacteria.


Asunto(s)
Cianobacterias , Ecosistema , Secuencia de Bases , Cianobacterias/genética , Filogenia , ARN Ribosómico 16S/genética
12.
Rev Sci Instrum ; 92(9): 093103, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34598542

RESUMEN

We have developed spin-resolved resonant electron energy-loss spectroscopy with the primary energy of 0.3-1.5 keV, which corresponds to the core excitations of 2p-3d absorption of transition metals and 3d-4f absorption of rare-earths, with the energy resolution of about 100 meV using a spin-polarized electron source as a GaAs/GaAsP strained superlattice photocathode. Element- and spin-selective carrier and valence plasmons can be observed using the resonance enhancement of core absorptions and electron spin polarization. Furthermore, bulk-sensitive electron energy-loss spectroscopy spectra can be obtained because the primary energy corresponds to the mean free path of 1-10 nm. The methodology is expected to provide us with novel information about elementary excitations by resonant inelastic x-ray scattering and resonant photoelectron spectroscopy.

13.
Front Microbiol ; 11: 1125, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32625173

RESUMEN

Conjugative transfer of bacterial plasmid is one of the major mechanisms of horizontal gene transfer, which is mediated by direct contact between donor and recipient cells. Gene expression of a conjugative plasmid is tightly regulated mostly by plasmid-encoded transcriptional regulators, but it remains obscure how differently plasmid genes are expressed in each cell during the conjugation event. Here, we report a comprehensive analysis of gene expression during conjugative transfer of plasmid RP4, which is transferred between isogenic strains of Pseudomonas putida KT2440 at very high frequency. To discriminate the expression changes in the donor and recipient cells, we took advantage of conjugation in the presence of rifampicin (Rif). Within 10 min of mating, we successfully detected transient transcription of plasmid genes in the resultant transconjugant cells. This phenomenon known as zygotic induction is likely attributed to derepression of multiple RP4-encoded repressors. Interestingly, we also observed that the traJIH operon encoding relaxase and its auxiliary proteins were upregulated specifically in the donor cells. Identification of the 5' end of the zygotically induced traJ mRNA confirmed that the transcription start site of traJ was located 24-nt upstream of the nick site in the origin of transfer (oriT) as previously reported. Since the traJ promoter is encoded on the region to be transferred first, the relaxase may be expressed in the donor cell after regeneration of the oriT-flanking region, which in itself is likely to displace the autogenous repressors around oriT. This study provides new insights into the regulation of plasmid transfer processes.

14.
Res Microbiol ; 171(8): 319-330, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32628999

RESUMEN

Bacterial iron-sulfur (Fe-S) clusters are essential cofactors for many metabolic pathways, and Fe-S cluster-containing proteins (Fe-S proteins) regulate the expression of various important genes. However, biosynthesis of such clusters has remained unknown in genus Burkholderia. Here, we clarified that Burkholderia multivorans ATCC 17616 relies on the ISC system for the biosynthesis of Fe-S clusters, and that the biosynthetic genes are organized as an isc operon, whose first gene encodes IscR, a transcriptional regulatory Fe-S protein. Transcription of the isc operon was repressed and activated under iron-rich and -limiting conditions, respectively, and Fur, an iron-responsive global transcriptional regulator, was indicated to indirectly regulate the expression of isc operon. Further analysis using a ΔiscR mutant in combination with a constitutive expression system of IscR and its derivatives indicated transcriptional repression and activation of isc operon by holo- and apo-forms of IscR, respectively, through their binding to the sequences within an isc promoter-containing (Pisc) fragment. Biochemical analysis using the Pisc fragment suggested that the apo-IscR binding sequence differs from the holo-IscR binding sequence. The results obtained in this study revealed a unique regulatory system for the expression of the ATCC 17616 isc operon that has not been observed in other genera.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderia/genética , Proteínas Hierro-Azufre/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Burkholderia/metabolismo , ADN Bacteriano , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/genética , Redes y Vías Metabólicas/genética , Mutación , Operón , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Represoras/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Microbiology (Reading) ; 166(6): 531-545, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32310743

RESUMEN

Sphingobium japonicum strain UT26, whose γ-hexachlorocyclohexane-degrading ability has been studied in detail, is a typical aerobic and heterotrophic bacterium that needs organic carbon sources for its growth, and cannot grow on a minimal salt agar medium prepared without adding any organic carbon sources. Here, we isolated a mutant of UT26 with the ability to grow to visible state on such an oligotrophic medium from a transposon-induced mutant library. This high-yield growth under oligotrophic conditions (HYGO) phenotype was CO2-dependent and accompanied with CO2 incorporation. In the HYGO mutant, a transposon was inserted just upstream of the putative Zn-dependent alcohol dehydrogenase (ADH) gene (adhX) so that the adhX gene was constitutively expressed, probably by the transposon-derived promoter. The adhX-deletion mutant (UT26DAX) harbouring a plasmid carrying the adhX gene under the control of a constitutive promoter exhibited the HYGO phenotype. Moreover, the HYGO mutants spontaneously emerged among the UT26-derived hypermutator strain cells, and adhX was highly expressed in these HYGO mutants, while no HYGO mutant appeared among UT26DAX-derived hypermutator strain cells, indicating the necessity of adhX for the HYGO phenotype. His-tagged AdhX that was expressed in Escherichia coli and purified to homogeneity showed ADH activity towards methanol and other alcohols. Mutagenesis analysis of the adhX gene indicated a correlation between the ADH activity and the HYGO phenotype. These results demonstrated that the constitutive expression of an adhX-encoding protein with ADH activity in UT26 leads to the CO2-dependent HYGO phenotype. Identical or nearly identical adhX orthologues were found in other sphingomonad strains, and most of them were located on plasmids, suggesting that the adhX-mediated HYGO phenotype may be an important adaptation strategy to oligotrophic environments among sphingomonads.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Sphingomonadaceae/crecimiento & desarrollo , Sphingomonadaceae/metabolismo , Alcohol Deshidrogenasa/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Procesos Heterotróficos , Hexaclorociclohexano/metabolismo , Mutación , Fenotipo , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Sphingomonadaceae/enzimología , Sphingomonadaceae/genética
16.
Commun Biol ; 2: 409, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728420

RESUMEN

Repairing of DNA termini is a crucial step in a variety of DNA handling techniques. In this study, we investigated mechanically-sheared DNA 3'-ends (MSD3Es) to establish an efficient repair method. As opposed to the canonical view of DNA terminus generated by sonication, we showed that approximately 47% and 20% of MSD3Es carried a phosphate group and a hydroxyl group, respectively. The others had unidentified abnormal terminal structures. Notably, a fraction of the abnormal 3' termini (about 20% of the total) was not repaired after the removal of 3' phosphates and T4 DNA polymerase (T4DP) treatment. To overcome this limitation, we devised a reaction, in which the 3'- > 5' exonuclease activity of exonuclease III (3'- > 5' exonuclease, insensitive to the 3' phosphate group) was counterbalanced by the 5'- > 3' polymerase activity of T4DP. This combined reaction, termed "SB-repairing" (for scrap-and-build repairing), will serve as a useful tool for the efficient repair of MSD3Es.


Asunto(s)
Reparación del ADN , ADN/química , ADN/metabolismo , ADN Nucleotidilexotransferasa/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Exodesoxirribonucleasas/metabolismo , Sonicación , Especificidad por Sustrato
17.
Appl Environ Microbiol ; 85(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604768

RESUMEN

Conjugative transfer of bacterial plasmids to recipient cells is often mediated by type IV secretion machinery. Experimental investigations into the minimal gene sets required for efficient conjugative transfer suggest that such gene sets are variable, depending on plasmids. We have been analyzing the conjugative transfer of Pseudomonas-derived and IncP-9 plasmids, NAH7 and pWW0, whose conjugation systems belong to the MPFT type. Our deletion analysis and synthetic biology analysis in this study showed that these plasmids require previously uncharacterized genes, mpfK (formerly orf34) and its functional homolog, kikA, respectively, for their efficient conjugative transfer. MpfK was localized in periplasm and had four cysteine residues whose intramolecular or intermolecular disulfide bond formation was suggested to be important for efficient conjugative transfer. The mpfK homologs were specifically carried by many MPFT-type plasmids, including non-IncP-9 plasmids, such as R388 and R751. Intriguingly, the mpfK homologs from the two non-IncP-9 plasmids were not required for conjugation of their plasmids, but were able to complement efficiently the transfer defect of the NAH7 mpfK mutant. Our results suggested the importance of the mpfK homologs for conjugative transfer of MPFT-type plasmids.IMPORTANCE IncP-9 plasmids are important mobile genetic elements for the degradation of various aromatic hydrocarbons. Elucidation of conjugative transfer of such plasmids is expected to greatly contribute to our understanding of its role in the bioremediation of polluted environments. The present study mainly focused on the conjugation system of NAH7, a well-studied and naphthalene-catabolic IncP-9 plasmid. Our analysis showed that the NAH7 conjugation system uniquely requires, in addition to the conserved components of the type IV secretion system (T4SS), a previously uncharacterized periplasmic protein, MpfK, for successful conjugation. Our findings collectively revealed a unique type of T4SS-associated conjugation system in the IncP-9 plasmids.


Asunto(s)
Proteínas Bacterianas/genética , Conjugación Genética , Plásmidos/genética , Secuencia de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli , Genes Bacterianos , Pseudomonas/genética , Pseudomonas putida/genética , Sistemas de Secreción Tipo IV/genética
18.
Microbiol Resour Announc ; 8(28)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31296670

RESUMEN

We determined the complete genome sequence of Thalassococcus sp. strain S3, a marine carbazole degrader isolated from Tokyo Bay in Japan that carries genes for aerobic anoxygenic phototrophy. Strain S3 has a 4.7-Mb chromosome that harbors the carbazole-degradative gene cluster and three (96-, 63-, and 46-kb) plasmids.

19.
Nat Commun ; 10(1): 2298, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127112

RESUMEN

The peculiar metallic electronic states observed in the Kondo insulator, samarium hexaboride (SmB6), has stimulated considerable attention among those studying non-trivial electronic phenomena. However, experimental studies of these states have led to controversial conclusions mainly due to the difficulty and inhomogeneity of the SmB6 crystal surface. Here, we show the detailed electronic structure of SmB6 with angle-resolved photoelectron spectroscopy measurements of the three-fold (111) surface where only two inequivalent time-reversal-invariant momenta (TRIM) exist. We observe the metallic two-dimensional state was dispersed across the bulk Kondo gap. Its helical in-plane spin polarisation around the surface TRIM indicates that SmB6 is topologically non-trivial, according to the topological classification theory for weakly correlated systems. Based on these results, we propose a simple picture of the controversial topological classification of SmB6.

20.
Environ Microbiol Rep ; 11(5): 630-644, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31063253

RESUMEN

Bacterial strains capable of degrading man-made xenobiotic compounds are good materials to study bacterial evolution towards new metabolic functions. Lindane (γ-hexachlorocyclohexane, γ-HCH, or γ-BHC) is an especially good target compound for the purpose, because it is relatively recalcitrant but can be degraded by a limited range of bacterial strains. A comparison of the complete genome sequences of lindane-degrading sphingomonad strains clearly demonstrated that (i) lindane-degrading strains emerged from a number of different ancestral hosts that have recruited lin genes encoding enzymes that are able to channel lindane to central metabolites, (ii) in sphingomonads lin genes have been acquired by horizontal gene transfer mediated by different plasmids and in which IS6100 plays a role in recruitment and distribution of genes, and (iii) IS6100 plays a role in dynamic genome rearrangements providing genetic diversity to different strains and ability to evolve to other states. Lindane-degrading bacteria whose genomes change so easily and quickly are also fascinating starting materials for tracing the bacterial evolution process experimentally in a relatively short time period. As the origin of the specific lin genes remains a mystery, such genes will be useful probes for exploring the cryptic 'gene pool' available to bacteria.


Asunto(s)
Biodegradación Ambiental , Genoma Bacteriano , Hexaclorociclohexano/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Proteínas Bacterianas/genética , Transferencia de Gen Horizontal , Genes Bacterianos , Filogenia , Plásmidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA