Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 112(8): 1265-1285.e10, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38377990

RESUMEN

Despite the rapid and sustained antidepressant effects of ketamine and its metabolites, their underlying cellular and molecular mechanisms are not fully understood. Here, we demonstrate that the sustained antidepressant-like behavioral effects of (2S,6S)-hydroxynorketamine (HNK) in repeatedly stressed animal models involve neurobiological changes in the anterior paraventricular nucleus of the thalamus (aPVT). Mechanistically, (2S,6S)-HNK induces mRNA expression of extrasynaptic GABAA receptors and subsequently enhances GABAA-receptor-mediated tonic currents, leading to the nuclear export of histone demethylase KDM6 and its replacement by histone methyltransferase EZH2. This process increases H3K27me3 levels, which in turn suppresses the transcription of genes associated with G-protein-coupled receptor signaling. Thus, our findings shed light on the comprehensive cellular and molecular mechanisms in aPVT underlying the sustained antidepressant behavioral effects of ketamine metabolites. This study may support the development of potentially effective next-generation pharmacotherapies to promote sustained remission of stress-related psychiatric disorders.


Asunto(s)
Ketamina , Animales , Humanos , Ketamina/farmacología , Simulación de Dinámica Molecular , Antidepresivos/farmacología , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
3.
Curr Res Neurobiol ; 3: 100028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518339

RESUMEN

Lipopolysaccharide (LPS), an outer component of Gram-negative bacteria, induces a strong response of innate immunity via microglia, which triggers a modulation of the intrinsic excitability of neurons. However, it is unclear whether the modulation of neurophysiological properties is similar among neurons. Here, we found the hypoexcitability of layer 5 (L5) pyramidal neurons after exposure to LPS in the medial prefrontal cortex (mPFC) of juvenile rats. We recorded the firing frequency of L5 pyramidal neurons long-lastingly under in vitro whole-cell patch-clamp, and we found a reduction of the firing frequency after applying LPS. A decrease in the intrinsic excitability against LPS-exposure was also found in L2/3 pyramidal neurons but not in fast-spiking interneurons. The decrease in the excitability by immune-activation was underlain by increased activity of small-conductance Ca2+-activated K+ channels (SK channels) in the pyramidal neurons and tumor necrosis factor (TNF)-α released from microglia. We revealed that the reduction of the firing frequency of L5 pyramidal neurons was dependent on intraneuronal Ca2+ and PP2B. These results suggest the hypoexcitability of pyramidal neurons caused by the upregulation of SK channels via Ca2+-dependent phosphatase during acute inflammation in the mPFC. Such a mechanism is in contrast to that of cerebellar Purkinje cells, in which immune activation induces hyperexcitability via downregulation of SK channels. Further, a decrease in the frequency of spontaneous inhibitory synaptic transmission reflected network hypoactivity. Therefore, our results suggest that the directionality of the intrinsic plasticity by microglia is not consistent, depending on the brain region and the cell type.

4.
Front Cell Neurosci ; 16: 925493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978857

RESUMEN

Immune cells play numerous roles in the host defense against the invasion of microorganisms and pathogens, which induces the release of inflammatory mediators (e.g., cytokines and chemokines). In the CNS, microglia is the major resident immune cell. Recent efforts have revealed the diversity of the cell types and the heterogeneity of their functions. The refinement of the synapse structure was a hallmark feature of the microglia, while they are also involved in the myelination and capillary dynamics. Another promising feature is the modulation of the synaptic transmission as synaptic plasticity and the intrinsic excitability of neurons as non-synaptic plasticity. Those modulations of physiological properties of neurons are considered induced by both transient and chronic exposures to inflammatory mediators, which cause behavioral disorders seen in mental illness. It is plausible for astrocytes and pericytes other than microglia and macrophage to induce the immune-triggered plasticity of neurons. However, current understanding has yet achieved to unveil what inflammatory mediators from what immune cells or glia induce a form of plasticity modulating pre-, post-synaptic functions and intrinsic excitability of neurons. It is still unclear what ion channels and intracellular signaling of what types of neurons in which brain regions of the CNS are involved. In this review, we introduce the ubiquitous modulation of the synaptic efficacy and the intrinsic excitability across the brain by immune cells and related inflammatory cytokines with the mechanism for induction. Specifically, we compare neuro-modulation mechanisms by microglia of the intrinsic excitability of cerebellar Purkinje neurons with cerebral pyramidal neurons, stressing the inverted directionality of the plasticity. We also discuss the suppression and augmentation of the extent of plasticity by inflammatory mediators, as the meta-plasticity by immunity. Lastly, we sum up forms of immune-triggered plasticity in the different brain regions with disease relevance. Together, brain immunity influences our cognition, sense, memory, and behavior via immune-triggered plasticity.

5.
Immun Inflamm Dis ; 10(7): e639, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35759231

RESUMEN

INTRODUCTION: Prominently accountable for the upsurge of COVID-19 cases as the world attempts to recover from the previous two waves, Omicron has further threatened the conventional therapeutic approaches. The lack of extensive research regarding Omicron has raised the need to establish correlations to understand this variant by structural comparisons. Here, we evaluate, correlate, and compare its genomic sequences through an immunoinformatic approach to understand its epidemiological characteristics and responses to existing drugs. METHODS: We reconstructed the phylogenetic tree and compared the mutational spectrum. We analyzed the mutations that occurred in the Omicron variant and correlated how these mutations affect infectivity and pathogenicity. Then, we studied how mutations in the receptor-binding domain affect its interaction with host factors through molecular docking. Finally, we evaluated the drug efficacy against the main protease of the Omicron through molecular docking and validated the docking results with molecular dynamics simulation. RESULTS: Phylogenetic and mutational analysis revealed the Omicron variant is similar to the highly infectious B.1.620 variant, while mutations within the prominent proteins are hypothesized to alter its pathogenicity. Moreover, docking evaluations revealed significant differences in binding affinity with human receptors, angiotensin-converting enzyme 2 and NRP1. Surprisingly, most of the tested drugs were proven to be effective. Nirmatrelvir, 13b, and Lopinavir displayed increased effectiveness against Omicron. CONCLUSION: Omicron variant may be originated from the highly infectious B.1.620 variant, while it was less pathogenic due to the mutations in the prominent proteins. Nirmatrelvir, 13b, and Lopinavir would be the most effective, compared to other promising drugs that were proven effective.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Interacciones Huésped-Patógeno/genética , Humanos , Lopinavir , Simulación del Acoplamiento Molecular , Filogenia , SARS-CoV-2/genética , Virulencia/genética
6.
Brain Sci ; 12(3)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35326323

RESUMEN

The cerebellum governs motor coordination and motor learning. Infection with external microorganisms, such as viruses, bacteria, and fungi, induces the release and production of inflammatory mediators, which drive acute cerebellar inflammation. The clinical observation of acute cerebellitis is associated with the emergence of cerebellar ataxia. In our animal model of the acute inflammation of the cerebellar cortex, animals did not show any ataxia but hyperexcitability in the cerebellar cortex and depression-like behaviors. In contrast, animal models with neurodegeneration of the cerebellar Purkinje cells and hypoexcitability of the neurons show cerebellar ataxia. The suppression of the Ca2+-activated K+ channels in vivo is associated with a type of ataxia. Therefore, there is a gap in our interpretation between the very early phase of cerebellar inflammation and the emergence of cerebellar ataxia. In this review, we discuss the hypothesized scenario concerning the emergence of cerebellar ataxia. First, compared with genetically induced cerebellar ataxias, we introduce infection and inflammation in the cerebellum via aberrant immunity and glial responses. Especially, we focus on infections with cytomegalovirus, influenza virus, dengue virus, and SARS-CoV-2, potential relevance to mitochondrial DNA, and autoimmunity in infection. Second, we review neurophysiological modulation (intrinsic excitability, excitatory, and inhibitory synaptic transmission) by inflammatory mediators and aberrant immunity. Next, we discuss the cerebellar circuit dysfunction (presumably, via maintaining the homeostatic property). Lastly, we propose the mechanism of the cerebellar ataxia and possible treatments for the ataxia in the cerebellar inflammation.

7.
Biology (Basel) ; 10(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419067

RESUMEN

The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.

8.
Neural Regen Res ; 16(3): 512-513, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32985479
9.
FEBS J ; 287(21): 4557-4593, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32367676

RESUMEN

The cerebellum, a universal processor for sensory acquisition and internal models, and its association with synaptic and nonsynaptic plasticity have been envisioned as the biological correlates of learning, perception, and even thought. Indeed, the cerebellum is no longer considered merely as the locus of motor coordination and its learning. Here, we introduce the mechanisms underlying the induction of multiple types of plasticity in cerebellar circuit and give an overview focusing on the plasticity of nonsynaptic intrinsic excitability. The discovery of long-term potentiation of synaptic responsiveness in hippocampal neurons led investigations into changes of their intrinsic excitability. This activity-dependent potentiation of neuronal excitability is distinct from that of synaptic efficacy. Systematic examination of excitability plasticity has indicated that the modulation of various types of Ca2+ - and voltage-dependent K+ channels underlies the phenomenon, which is also triggered by immune activity. Intrinsic plasticity is expressed specifically on dendrites and modifies the integrative processing and filtering effect. In Purkinje cells, modulation of the discordance of synaptic current on soma and dendrite suggested a novel type of cellular learning mechanism. This property enables a plausible synergy between synaptic efficacy and intrinsic excitability, by amplifying electrical conductivity and influencing the polarity of bidirectional synaptic plasticity. Furthermore, the induction of intrinsic plasticity in the cerebellum correlates with motor performance and cognitive processes, through functional connections from the cerebellar nuclei to neocortex and associated regions: for example, thalamus and midbrain. Taken together, recent advances in neuroscience have begun to shed light on the complex functioning of nonsynaptic excitability and the synergy.


Asunto(s)
Cerebelo/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Corteza Cerebral/fisiología , Hipocampo/fisiología , Humanos
10.
J Neurosci ; 40(2): 267-282, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31754008

RESUMEN

The role of dendrites in the integration of widespread synaptic activity has been studied in experiments and theories (Johnston et al., 1996; Magee, 2007). However, whether the conduction of synaptic currents from dendrites to the soma depends on excitability of those dendritic branches is unclear. How modulation of the branch excitability affects the conduction of synaptic inputs and their selection on dendrites is also elusive. Here, I performed simultaneous voltage-clamp recordings from the soma and dendrites of single cerebellar Purkinje neurons in male Sprague-Dawley rats and analyzed the relationship between spontaneous EPSCs on both sides. I found that EPSCs on distal dendrites have a salient discordance in amplitude compared with those on the soma. Furthermore, individual ratios of the EPSC concurrently recorded on the soma and dendrites were not unique, but discrete, suggesting the occurrence of various attenuations in different paths of dendritic branches to the soma. The obtained data and simulations indicate several distinct groups (4.5 ± 0.3, n = 22 somatodendritic recordings) of co-occurred synaptic inputs in Purkinje cell dendrites. This clustering of synaptic currents was suggested to emerge at farther distances than the secondary bifurcations. Finally, ratios of the co-EPSCs were uniformly distributed after either intrinsic plasticity induction or SK-channel blockade. Overall, results suggest that in Purkinje cells the excitability along the dendrite processes modulates the conduction of EPSCs and makes active inputs heterogeneous through SK channel activity, intrinsic plasticity, and dendritic branching. These properties of dendrites may confer branch-specific computational power to neurons.SIGNIFICANCE STATEMENT I have previously studied the "non-synaptic" plasticity of the intrinsic excitability in the cerebellar Purkinje cells (Belmeguenai et al., 2010), and branch-specific increase of intrinsic excitability of the dendrites (Ohtsuki et al., 2012b; Ohtsuki and Hansel, 2018) through the downregulation of SK (small conductance Ca2+-activated K+) channels. In this study, I show that a dendritic filtering of synaptic electroconductivity is heterogeneous among the branches on distal dendrites and that the increase in the dendritic excitability accompanied with the intrinsic plasticity alters a state with the heterogeneity to a globally excitable state in Purkinje neurons. My findings propose a new learning model relying on the intrinsic excitability plasticity of the dendritic branch fields.


Asunto(s)
Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Sinapsis/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratas , Ratas Sprague-Dawley
11.
Cell Rep ; 28(11): 2923-2938.e8, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31509752

RESUMEN

Cerebellar dysfunction relates to various psychiatric disorders, including autism spectrum and depressive disorders. However, the physiological aspect is less advanced. Here, we investigate the immune-triggered hyperexcitability in the cerebellum on a wider scope. Activated microglia via exposure to bacterial endotoxin lipopolysaccharide or heat-killed Gram-negative bacteria induce a potentiation of the intrinsic excitability in Purkinje neurons, which is suppressed by microglia-activity inhibitor and microglia depletion. An inflammatory cytokine, tumor necrosis factor alpha (TNF-α), released from microglia via toll-like receptor 4, triggers this plasticity. Our two-photon FRET ATP imaging shows an increase in ATP concentration following endotoxin exposure. Both TNF-α and ATP secretion facilitate synaptic transmission. Region-specific inflammation in the cerebellum in vivo shows depression- and autistic-like behaviors. Furthermore, both TNF-α inhibition and microglia depletion revert such behavioral abnormality. Resting-state functional MRI reveals overconnectivity between the inflamed cerebellum and the prefrontal neocortical regions. Thus, immune activity in the cerebellum induces neuronal hyperexcitability and disruption of psychomotor behaviors in animals.


Asunto(s)
Cerebelo/inmunología , Depresión/metabolismo , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Células de Purkinje/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Trastorno Autístico/inmunología , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Depresión/tratamiento farmacológico , Depresión/inmunología , Depresión/psicología , Inflamación/inmunología , Inflamación/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/toxicidad , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Plasticidad Neuronal/inmunología , Compuestos de Fenilurea/administración & dosificación , Células de Purkinje/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/inmunología , Transmisión Sináptica/fisiología , Tiazoles/administración & dosificación , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/farmacología
12.
iScience ; 1: 49-54, 2018 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-29888747

RESUMEN

Neurons store information and participate in memory engrams as a result of experience-dependent changes in synaptic weights and in membrane excitability. Here, we examine excitatory postsynaptic potential (EPSP) amplitude and neuronal excitability in relation to these two mechanisms of plasticity. We analyze somato-dendritic double-patch recordings from cerebellar Purkinje cells while inducing intrinsic, SK2 channel-dependent plasticity or blocking SK channels with bath application of apamin. Both manipulations increase the build-up of EPSP amplitudes during an EPSP train and enhance the number of EPSP-evoked spikes, yielding insights into the mechanistic contribution of EPSP amplitude to single spikes and spike bursts. EPSP amplitude has an impact on whether spikes are fired or not, but direct measures of excitability (spike threshold/AHP) are better predictors of whether individual spikes or spike bursts are fired. Our findings show that Purkinje cell spiking is synaptically driven but that burst firing is gated by SK2 channel modulation and plasticity.

13.
Cell Rep ; 14(11): 2546-53, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26972012

RESUMEN

The plasticity of intrinsic excitability has been described in several types of neurons, but the significance of non-synaptic mechanisms in brain plasticity and learning remains elusive. Cerebellar Purkinje cells are inhibitory neurons that spontaneously fire action potentials at high frequencies and regulate activity in their target cells in the cerebellar nuclei by generating a characteristic spike burst-pause sequence upon synaptic activation. Using patch-clamp recordings from mouse Purkinje cells, we find that depolarization-triggered intrinsic plasticity enhances spike firing and shortens the duration of spike pauses. Pause plasticity is absent from mice lacking SK2-type potassium channels (SK2(-/-) mice) and in occlusion experiments using the SK channel blocker apamin, while apamin wash-in mimics pause reduction. Our findings demonstrate that spike pauses can be regulated through an activity-dependent, exclusively non-synaptic, SK2 channel-dependent mechanism and suggest that pause plasticity-by altering the Purkinje cell output-may be crucial to cerebellar information storage and learning.


Asunto(s)
Células de Purkinje/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Apamina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/deficiencia , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética
14.
Cerebellum ; 14(3): 292-307, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25626522

RESUMEN

This study represents the first detailed analysis of the spontaneous neurological mouse mutant, tippy, uncovering its unique cerebellar phenotype. Homozygous tippy mutant mice are small, ataxic, and die around weaning. Although the cerebellum shows grossly normal foliation, tippy mutants display a complex cerebellar Purkinje cell phenotype consisting of abnormal dendritic branching with immature spine features and patchy, non-apoptotic cell death that is associated with widespread dystrophy and degeneration of the Purkinje cell axons throughout the white matter, the cerebellar nuclei, and the vestibular nuclei. Moderate anatomical abnormalities of climbing fiber innervation of tippy mutant Purkinje cells were not associated with changes in climbing fiber-EPSC amplitudes. However, decreased ESPC amplitudes were observed in response to parallel fiber stimulation and correlated well with anatomical evidence for patchy dark cell degeneration of Purkinje cell dendrites in the molecular layer. The data suggest that the Purkinje neurons are a primary target of the tippy mutation. Furthermore, we hypothesize that the Purkinje cell axonal pathology together with disruptions in the balance of climbing fiber and parallel fiber-Purkinje cell input in the cerebellar cortex underlie the ataxic phenotype in these mice. The constellation of Purkinje cell dendritic malformation and degeneration phenotypes in tippy mutants is unique and has not been reported in any other neurologic mutant. Fine mapping of the tippy mutation to a 2.1 MB region of distal chromosome 9, which does not encompass any gene previously implicated in cerebellar development or neuronal degeneration, confirms that the tippy mutation identifies novel biology and gene function.


Asunto(s)
Ataxia/patología , Corteza Cerebelosa/citología , Ratones Mutantes Neurológicos , Morfogénesis , Degeneración Nerviosa/psicología , Células de Purkinje/patología , Animales , Ataxia/fisiopatología , Axones/patología , Dendritas/patología , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo
15.
Neuron ; 75(1): 65-72, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22794261

RESUMEN

Neurons in rodent visual cortex are organized in a salt-and-pepper fashion for orientation selectivity, but it is still unknown how this functional architecture develops. A recent study reported that the progeny of single cortical progenitor cells are preferentially connected in the postnatal cortex. If these neurons acquire similar selectivity through their connections, a salt-and-pepper organization may be generated, because neurons derived from different progenitors are intermingled in rodents. Here we investigated whether clonally related cells have similar preferred orientation by using a transgenic mouse, which labels all the progeny of single cortical progenitor cells. We found that preferred orientations of clonally related cells are similar to each other, suggesting that cell lineage is involved in the development of response selectivity of neurons in the cortex. However, not all clonally related cells share response selectivity, suggesting that cell lineage is not the only determinant of response selectivity.


Asunto(s)
Células-Madre Neurales/fisiología , Neuronas/fisiología , Estimulación Luminosa/métodos , Corteza Visual/citología , Corteza Visual/fisiología , Animales , Células Clonales , Ratones , Ratones Transgénicos
16.
Neuron ; 75(1): 108-20, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-22794265

RESUMEN

Small-conductance Ca(2+)-activated K(+) channels (SK channels) modulate excitability and curtail excitatory postsynaptic potentials (EPSPs) in neuronal dendrites. Here, we demonstrate long-lasting plasticity of intrinsic excitability (IE) in dendrites that results from changes in the gain of this regulatory mechanism. Using dendritic patch-clamp recordings from rat cerebellar Purkinje cells, we find that somatic depolarization or parallel fiber (PF) burst stimulation induce long-term amplification of synaptic responses to climbing fiber (CF) or PF stimulation and enhance the amplitude of passively propagated sodium spikes. Dendritic plasticity is mimicked and occluded by the SK channel blocker apamin and is absent in Purkinje cells from SK2 null mice. Triple-patch recordings from two dendritic sites and the soma and confocal calcium imaging studies show that local stimulation limits dendritic plasticity to the activated compartment of the dendrite. This plasticity mechanism allows Purkinje cells to adjust the SK2-mediated control of dendritic excitability in an activity-dependent manner.


Asunto(s)
Cerebelo/fisiología , Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Apamina/farmacología , Compartimento Celular/efectos de los fármacos , Compartimento Celular/fisiología , Cerebelo/citología , Cerebelo/efectos de los fármacos , Dendritas/efectos de los fármacos , Ratones , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Células de Purkinje/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores
17.
J Neurosci ; 30(45): 15330-5, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068337

RESUMEN

A classic view in cerebellar physiology holds that Purkinje cells do not express functional NMDA receptors and that, therefore, postsynaptic NMDA receptors are not involved in the induction of long-term depression (LTD) at parallel fiber (PF) to Purkinje cell synapses. Recently, it has been demonstrated that functional NMDA receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in mice, reaching full expression levels at ∼2 months after birth. Here, we show that in the mature mouse cerebellum LTD (induced by paired PF and CF activation), but not long-term potentiation (LTP; PF stimulation alone) at PF to Purkinje cell synapses is blocked by bath application of the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (D-APV). A blockade of LTD, but not LTP, was also observed when the noncompetitive NMDA channel blocker MK-801 was added to the patch-pipette saline, suggesting that postsynaptically expressed NMDA receptors are required for LTD induction. Using confocal calcium imaging, we show that CF-evoked calcium transients in dendritic spines are reduced in the presence of D-APV. This observation confirms that NMDA receptor signaling occurs at CF synapses and suggests that NMDA receptor-mediated calcium transients at the CF input site might contribute to LTD induction. Finally, we performed dendritic patch-clamp recordings from rat Purkinje cells. Dendritically recorded CF responses were reduced when D-APV was bath applied. Together, these data suggest that the late developmental expression of postsynaptic NMDA receptors at CF synapses onto Purkinje cells is associated with a switch toward an NMDA receptor-dependent LTD induction mechanism.


Asunto(s)
Cerebelo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Células de Purkinje/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Calcio/metabolismo , Cerebelo/citología , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
18.
J Neurosci ; 30(41): 13630-43, 2010 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-20943904

RESUMEN

Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction. Purkinje cell intrinsic plasticity resembles CA1 hippocampal pyramidal cell intrinsic plasticity in that it requires activity of protein kinase A (PKA) and casein kinase 2 (CK2) and is mediated by a downregulation of SK-type calcium-sensitive K conductances. In addition, Purkinje cell intrinsic plasticity similarly results in enhanced spine calcium signaling. However, there are fundamental differences: first, while in the hippocampus increases in excitability result in a higher probability for LTP induction, intrinsic plasticity in Purkinje cells lowers the probability for subsequent LTP induction. Second, intrinsic plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.


Asunto(s)
Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Células de Purkinje/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Quinasa de la Caseína II/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Electrofisiología , Inmunohistoquímica , Ratones , Ratones Transgénicos , Microscopía Confocal , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Estadísticas no Paramétricas , Sinapsis/fisiología
19.
Front Cell Neurosci ; 3: 4, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19597563

RESUMEN

The physiology of climbing fiber signals in cerebellar Purkinje cells has been studied since the early days of electrophysiology. Both the climbing fiber-evoked complex spike and the role of climbing fiber activity in the induction of long-term depression (LTD) at parallel fiber-Purkinje cell synapses have become hallmark features of cerebellar physiology. However, the key role of climbing fiber signaling in cerebellar motor learning has been challenged by recent reports of forms of synaptic and non-synaptic plasticity in the cerebellar cortex that do not involve climbing fiber activity, but might well play a role in cerebellar learning. Moreover, cerebellar LTD does not seem to strictly require climbing fiber activity. These observations make it necessary to re-evaluate the role of climbing fiber signaling in cerebellar function. Here, we argue that climbing fiber signaling is about adjusting relative probabilities for the induction of LTD and long-term potentiation (LTP) at parallel fiber synapses. Complex spike-associated, dendritic calcium transients control postsynaptic LTD and LTP induction. High calcium transients, provided by complex spike activity, do not only favor postsynaptic LTD induction, but simultaneously trigger retrograde cannabinoid signaling, which blocks the induction of presynaptic LTP. Plasticity of the climbing fiber input itself provides additional means to fine-tune complex spike associated calcium signaling and thus to adjust the gain of heterosynaptic climbing fiber control. In addition to dendritic calcium transients, climbing fiber activity leads to the release of the neuropeptide corticotropin-releasing factor (CRF), which facilitates LTD induction at both parallel fiber and climbing fiber synapses.

20.
Eur J Neurosci ; 28(12): 2393-400, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19032589

RESUMEN

Climbing fibers provide one of the two major excitatory inputs to the cerebellar cortex. In an immature animal, several climbing fibers form synapses with one Purkinje neuron. During postnatal development most climbing fiber innervations with a Purkinje neuron are eliminated and only one strong fiber remains. Previous studies suggested that this pruning of surplus climbing fiber innervations depends on the neuronal activity. We hypothesized that synaptic plasticity might play a role in the maturation and refinement of such a climbing fiber projection pattern, and examined the plasticity properties of synapses between postnatal days 5 and 9 in mice. We found that a 5 Hz conditioning stimulation of climbing fibers forming relatively strong synapses with a Purkinje neuron induced long-term potentiation of the transmission accompanied by a decrease in the paired-pulse ratio of excitatory postsynaptic current amplitudes. This was suggestive of an increased probability of presynaptic release. However, the conditioning stimulation of climbing fibers forming relatively weak synapses induced long-term depression and tended to increase the paired-pulse ratio. Thus, the direction of plasticity appears to be determined by the strength of synaptic connection. Long-term depression occurred only in the conditioned climbing fiber, whereas long-term potentiation spread to unconditioned climbing fibers. A postsynaptic increase in the intracellular Ca(2+) concentration was required for long-term potentiation but not for long-term depression. These results reveal the existence of novel presynaptic plasticity at immature climbing fiber-Purkinje cell synapses, which may contribute to the maturation and refinement of the climbing fiber projection pattern.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Fibras Nerviosas/metabolismo , Células de Purkinje/metabolismo , Sinapsis/fisiología , Animales , Calcio/metabolismo , Cerebelo/citología , Cerebelo/fisiología , Ratones , Ratones Endogámicos C57BL , Células de Purkinje/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...