Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 5(4)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30225345

RESUMEN

Action potentials propagating along axons are often followed by prolonged afterdepolarization (ADP) lasting for several tens of milliseconds. Axonal ADP is thought to be an important factor in modulating the fidelity of spike propagation during repetitive firings. However, the mechanism as well as the functional significance of axonal ADP remain unclear, partly due to inaccessibility to small structures of axon for direct electrophysiological recordings. Here, we examined the ionic and electrical mechanisms underlying axonal ADP using whole-bouton recording from mossy fiber terminals in mice hippocampal slices. ADP following axonal action potentials was strongly enhanced by focal application of veratridine, an inhibitor of Na+ channel inactivation. In contrast, tetrodotoxin (TTX) partly suppressed ADP, suggesting that a Na+ channel-dependent component is involved in axonal ADP. The remaining TTX-resistant Na+ channel-independent component represents slow capacitive discharge reflecting the shape and electrical properties of the axonal membrane. We also addressed the functional impact of axonal ADP on presynaptic function. In paired-pulse stimuli, we found that axonal ADP minimally affected the peak height of subsequent action potentials, although the rising phase of action potentials was slightly slowed, possibly due to steady-state inactivation of Na+ channels by prolonged depolarization. Voltage clamp analysis of Ca2+ current elicited by action potential waveform commands revealed that axonal ADP assists short-term facilitation of Ca2+ entry into the presynaptic terminals. Taken together, these data show that axonal ADP maintains reliable firing during repetitive stimuli and plays important roles in the fine-tuning of short-term plasticity of transmitter release by modulating Ca2+ entry into presynaptic terminals.


Asunto(s)
Potenciales de Acción/fisiología , Señalización del Calcio/fisiología , Moduladores del Transporte de Membrana/farmacología , Fibras Musgosas del Hipocampo/fisiología , Canales de Sodio/efectos de los fármacos , Veratridina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musgosas del Hipocampo/efectos de los fármacos
2.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29468192

RESUMEN

Axonal spike is an important upstream process of transmitter release, which directly impacts on release probability from the presynaptic terminals. Despite the functional significance, possible activity-dependent modulation of axonal spikes has not been studied extensively, partly due to inaccessibility of the small structures of axons for electrophysiological recordings. In this study, we tested the possibility of use-dependent changes in axonal spikes at the hippocampal mossy fibers, where direct recordings from the axon terminals are readily feasible. Hippocampal slices were made from mice of either sex, and loose-patch clamp recordings were obtained from the visually identified giant mossy fiber boutons located in the stratum lucidum of the CA3 region. Stimulation of the granule cell layer of the dentate gyrus elicited axonal spikes at the single bouton which occurred in all or none fashion. Unexpected from the digital nature of spike signaling, the peak amplitude of the second spikes in response to paired stimuli at a 50-ms interval was slightly but reproducibly smaller than the first spikes. Repetitive stimuli at 20 or 100 Hz also caused progressive use-dependent depression during the train. Notably, veratridine, an inhibitor of inactivation of sodium channels, significantly accelerated the depression with minimal effect on the initial spikes. These results suggest that sodium channels contribute to use-dependent depression of axonal spikes at the hippocampal mossy fibers, possibly by shaping the afterdepolarization (ADP) following axonal spikes. Prolonged depolarization during ADP may inactivate a fraction of sodium channels and thereby suppresses the subsequent spikes at the hippocampal mossy fibers.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Fibras Musgosas del Hipocampo/fisiología , Plasticidad Neuronal/fisiología , Canales de Sodio/metabolismo , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Axones/efectos de los fármacos , Ratones Endogámicos C57BL , Fibras Musgosas del Hipocampo/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Tetrodotoxina/farmacología , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Veratridina/farmacología
3.
J Physiol Sci ; 66(3): 189-96, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26493201

RESUMEN

The axon is a long neuronal process that originates from the soma and extends towards the presynaptic terminals. The pioneering studies on the squid giant axon or the spinal cord motoneuron established that the axon conducts action potentials faithfully to the presynaptic terminals with self-regenerative processes of membrane excitation. Recent studies challenged the notion that the fundamental understandings obtained from the study of squid giant axons are readily applicable to the axons in the mammalian central nervous system (CNS). These studies revealed that the functional and structural properties of the CNS axons are much more variable than previously thought. In this review article, we summarize the recent understandings of axon physiology in the mammalian CNS due to progress in the subcellular recording techniques which allow direct recordings from the axonal membranes, with emphasis on the hippocampal mossy fibers as a representative en passant axons typical for cortical axons.


Asunto(s)
Potenciales de Acción/fisiología , Axones/fisiología , Sistema Nervioso Central/fisiología , Animales , Axones/ultraestructura , Sistema Nervioso Central/anatomía & histología , Fibras Musgosas del Hipocampo/anatomía & histología , Fibras Musgosas del Hipocampo/fisiología , Canales de Potasio/fisiología , Canales de Sodio/fisiología
4.
Brain Res ; 1631: 127-36, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26638837

RESUMEN

Growing axons rely on local signaling at the growth cone for guidance cues. Semaphorin3A (Sema3A), a secreted repulsive axon guidance molecule, regulates synapse maturation and dendritic branching. We previously showed that local Sema3A signaling in the growth cones elicits retrograde retrograde signaling via PlexinA4 (PlexA4), one component of the Sema3A receptor, thereby regulating dendritic localization of AMPA receptor GluA2 and proper dendritic development. In present study, we found that nimodipine (voltage-gated L-type Ca(2+) channel blocker) and tetrodotoxin (TTX; voltage-gated Na(+) channel blocker) suppress Sema3A-induced dendritic localization of GluA2 and dendritic branch formation in cultured hippocampal neurons. The local application of nimodipine or TTX to distal axons suppresses retrograde transport of Venus-Sema3A that has been exogenously applied to the distal axons. Sema3A facilitates axonal transport of PlexA4, which is also suppressed in neurons treated with either TTX or nimodipine. These data suggest that voltage-gated calcium and sodium channels mediate Sema3A retrograde signaling that regulates dendritic GluA2 localization and branch formation.


Asunto(s)
Canales de Calcio/metabolismo , Dendritas/fisiología , Conos de Crecimiento/metabolismo , Semaforina-3A/metabolismo , Animales , Transporte Axonal/fisiología , Calcio/metabolismo , Células Cultivadas , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Neurogénesis/efectos de los fármacos , Neuronas/metabolismo , Nimodipina/farmacología , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Transducción de Señal/efectos de los fármacos , Canales de Sodio/metabolismo , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...