Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 10(2)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38391469

RESUMEN

Biodegradable injectable polymer (IP) systems that form hydrogels in situ when injected into the body have considerable potential as medical materials. In this paper, we report a new two-solution mixed biodegradable IP system that utilizes the stereocomplex (SC) formation of poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA). We synthesized triblock copolymers of PLLA and poly(ethylene glycol), PLLA-b-PEG-b-PLLA (tri-L), and a graft copolymer of dextran (Dex) attached to a PDLA-b-PEG diblock copolymer, Dex-g-(PDLA-b-PEG) (gb-D). We found that a hydrogel can be obtained by mixing gb-D solution and tri-L solution via SC formation. Although it is already known that graft copolymers attached to enantiomeric PLLA and PDLA chains can form an SC hydrogel upon mixing, we revealed that hydrogels can also be formed by a combination of graft and triblock copolymers. In this system (graft vs. triblock), the gelation time was shorter, within 1 min, and the physical strength of the resulting hydrogel (G' > 100 Pa) was higher than when graft copolymers were mixed. Triblock copolymers form micelles (16 nm in diameter) in aqueous solutions and hydrophobic drugs can be easily encapsulated in micelles. In contrast, graft copolymers have the advantage that their molecular weight can be set high, contributing to improved mechanical strength of the obtained hydrogel. Various biologically active polymers can be used as the main chains of graft copolymers, and chemical modification using the remaining functional side chain groups is also easy. Therefore, the developed mixing system with a graft vs. triblock combination can be applied to medical materials as a highly convenient, physically cross-linked IP system.

2.
Int J Pharm ; 652: 123801, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38244647

RESUMEN

Immune cell delivery using injectable hydrogel attracts much attention for improving its therapeutic effect. Specifically, dendritic cells (DCs) are the trigger cells for immune responses, and DC vaccines are studied for improving cancer immunotherapy. Hydrogel-assisted cell delivery is expected to enhance the viability of the implanted cells. We recently reported temperature-responsive biodegradable injectable polymer (IP) formulation utilizing poly(ε-caprolactone-co-glycolide)-b-poly(ethylene glycol)(PEG)-b-poly(ε-caprolactone-co-glycolide) (tri-PCG). Tri-PCG-based IP was reported to exhibit immediate sol-to-gel transition in response to temperature increase, in vivo biodegradability, and excellent biocompatibility. In this study, tri-PCG-based IP was applied to DC delivery. IP encapsulated live DCs, and the DCs incorporated ovalbumin (OVA) as a model antigen and CpG-DNA (oligo DNA with adjuvant effect) in IP hydrogel. Results suggested that DCs encapsulated in IP hydrogel internalized OVA and CpG-DNA and DCs were maturated to present antigens to T cells. Moreover, subcutaneously injected tri-PCG-based IP prolonged the retention period of cell accumulation at injected sites. Tri-PCG IP hydrogel could release matured DCs as the degradation of the hydrogel progressed. Tri-PCG IP formulation improved treatment efficacy of OVA transfected mouse lymphoma (E.G7-OVA) tumor. Hence, tri-PCG IP is a promising platform for immune cell delivery.


Asunto(s)
Caproatos , Lactonas , Neoplasias , Polímeros , Ratones , Animales , Polímeros/metabolismo , Polietilenglicoles , Hidrogeles , Antígenos , ADN , Células Dendríticas , Inmunoterapia , Neoplasias/terapia
3.
Angew Chem Int Ed Engl ; 63(11): e202317045, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38191829

RESUMEN

Topological gels possess structures that are cross-linked only via physical constraints; ideally, no attractive intermolecular interactions act between their components, which yields interesting physical properties. However, most reported previous topological gels were synthesized based on supramolecular interlocked structures such as polyrotaxane, for which attractive intermolecular interactions are essential. Here, we synthesize a water-soluble "molecular net" (MN) with a large molecular weight and three-dimensional network structure using poly(ethylene glycol). When a water-soluble monomer (N-isopropylacrylamide) is polymerized in the presence of the MNs, the extending polymer chains penetrates the MNs to form an ideal topological MN gel with no specific attractive interactions between its components. The MN gels show unique physical properties as well a significantly high degree of swelling and high extensibility due to slipping of the physical cross-linking. We postulate this method to yield a new paradigm in gel science with unprecedented physical properties.

4.
ACS Biomater Sci Eng ; 9(6): 3414-3424, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37159164

RESUMEN

Developing delivery vehicles that achieve drug accumulation in the liver and transferability into hepatic stellate cells (HSCs) across the liver sinusoidal endothelium is essential to establish a treatment for hepatic fibrosis. We previously developed hyaluronic acid (HA)-coated polymeric micelles that exhibited affinity to liver sinusoidal endothelial cells. HA-coated micelles possess a core-shell structure of self-assembled biodegradable poly(l-lysine)-b-poly(lactic acid) AB-diblock copolymer (PLys+-b-PLLA), and its exterior is coated with HA through polyion complex formation via electrostatic interaction between anionic HAs and cationic PLys segments. In this study, we prepared HA-coated micelles entrapping olmesartan medoxomil (OLM), an anti-fibrotic drug, and evaluated their possibility as drug delivery vehicles. HA-coated micelles exhibited specific cellular uptake into LX-2 cells (human HSC line) in vitro. In vivo imaging analysis after intravenous (i.v.) injection of HA-coated micelles into mice revealed that the micelles exhibited high accumulation in the liver. Observation of mouse liver tissue sections suggested that HA-coated micelles were distributed in liver tissue. Furthermore, i.v. injection of HA-coated micelles entrapping OLM showed a remarkable anti-fibrotic effect against the liver cirrhosis mouse model. Therefore, HA-coated micelles are promising candidates as drug delivery vehicles for the clinical management of liver fibrosis.


Asunto(s)
Ácido Hialurónico , Micelas , Ratones , Humanos , Animales , Células Endoteliales , Sistemas de Liberación de Medicamentos/métodos , Polímeros/química , Cirrosis Hepática/tratamiento farmacológico
5.
Biomater Sci ; 10(8): 1920-1928, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35133358

RESUMEN

Hyaluronic acid (HA)-coated biodegradable polymeric micelles were developed as nanoparticulate vaccine delivery systems to establish an effective nasal vaccine. We previously reported HA-coated micelles prepared by forming a polyion complex (PIC) of poly(L-lysine)-b-polylactide (PLys+-b-PLA) micelles and HA. The HA-coated micelles exhibited specific accumulation in HA receptor-expressing cells and extremely high colloidal stability under diluted blood conditions. In this study, a model antigen, ovalbumin (OVA), and an adjuvant oligonucleotide containing the CG motif (CpG-DNA) were efficiently loaded in HA-coated micelles via electrostatic interactions. HA-coated micelles delivered OVA and CpG-DNA in mouse bone marrow-derived dendritic cells (BMDCs) and resulted in the upregulation of mRNA encoding IFN-γ and IL-4 in BMDCs. In addition, HA-coated micelles enhanced the expression of the major histocompatibility complex (MHC) class II on BMDCs. We investigated the immune response of HA-coated micelles following intranasal administration. HA-coated micelles induced higher OVA-specific IgG in the blood and OVA-specific IgA in the nasal wash than control (carboxymethyl dextran-coated) micelles. These results suggest that HA-coated micelles efficiently deliver antigens and adjuvants to mucosal-resident immune cells. Therefore, HA-coated micelles are promising platforms for developing nasal vaccines against infectious diseases.


Asunto(s)
Micelas , Vacunas , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos , ADN/farmacología , Células Dendríticas , Antígenos de Histocompatibilidad Clase II , Ácido Hialurónico/farmacología , Ratones , Ovalbúmina , Polímeros/farmacología
6.
Acta Biomater ; 135: 318-330, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34461346

RESUMEN

Injectable polymers (IPs) exhibiting in situ hydrogel formation have attracted attention as vascular embolization and postoperative adhesion prevention materials. While utilizing hydrogels for such purposes, it is essential to ensure that they have appropriate and controllable tissue adhesion property, as it is crucial for them to not detach from their deposited location in the blood vessel or abdominal cavity. Additionally, it is important to maintain gel state in vivo for the desired period at such locations, where large amounts of body fluid exist. We had previously reported on a biodegradable IP system exhibiting temperature-responsive gelation and subsequent covalent cross-link formation. We had utilized triblock copolymers of aliphatic polyester and poly(ethylene glycol) (tri-PCGs) and its derivative containing acrylate group at the termini (tri-PCG-Acryl), exhibiting a longer and more controllable duration time of the gel state. In this study, the introduction of aldehyde groups by the addition of aldehyde-modified Pluronic (PL-CHO) was performed for conferring controllable and appropriate tissue adhesive properties on these IP systems. The IP systems containing PL-CHO, which were not covalently incorporated into the hydrogel network, exhibited tissue adhesive properties through Schiff base formation. The adhesion strength could be controlled by the amount of PL-CHO added. The IP system showed good vascular embolization performance and pressure resistance in the blood vessels. The IP hydrogel remained at the administration site in the abdominal space for 2 days and displayed effective adhesion prevention performance. STATEMENT OF SIGNIFICANCE: Injectable polymers (IPs), which exhibit in situ hydrogel formation, are expected to be utilized as vascular embolization and postoperative adhesion prevention materials. The tissue adhesion properties of hydrogels are important for such applications. We succeeded in conferring tissue adhesion properties onto a previously reported IP system by mixing it with Pluronic modified with aldehyde groups (PL-CHO). The aldehyde groups allowed for the formation of Schiff bases at the tissue surfaces. The tissue adhesion property could be conveniently controlled by altering the amount of PL-CHO. We revealed that the in vitro embolization properties of IPs in blood vessels could be substantially improved by mixing with PL-CHO. The IP system containing PL-CHO also exhibited good in vivo performance for postoperative adhesion prevention.


Asunto(s)
Adhesivos Tisulares , Hidrogeles/farmacología , Polietilenglicoles , Polímeros , Temperatura
7.
Sci Technol Adv Mater ; 22(1): 627-642, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393660

RESUMEN

Adipose-derived stem cell (AdSC) has been attracting attention as a convenient stem cell source. Not only AdSC can differentiate into various tissue cells, but it can also accelerate cell proliferation, anti-inflammation, and angiogenesis by secreting paracrine factors. Studies have demonstrated AdSC treatment of ischemic heart. However, an improvement in the remaining live AdSCs administered at the injected site while maintaining paracrine factor secretion is desired to achieve effective regenerative medicine. We previously reported the ABA-type tri-block copolymer of poly(ɛ-caprolactone-co-glycolic acid) and poly(ethylene glycol) (tri-PCG), exhibiting temperature-responsive sol-to-gel transition as biodegradable injectable polymer (IP) systems. Moreover, we recently reported that the biodegradable temperature-triggered chemically cross-linked gelation systems exhibited longer gel state durations using tri-PCG attaching acryloyl groups and a polythiol derivative. In this study, we explored this IP-mediated AdSC delivery system. We investigated the cell viability, mRNA expression, and cytokine secretion of AdSCs cultured in the physical or chemical IP hydrogels. Both of these IP hydrogels retained a certain number of viable cells, and RT-PCR and ELISA analyses revealed that mRNA expression and secretion of vascular endothelial growth factor of the AdSCs cultured in the chemical hydrogel were higher than the physical hydrogel. Moreover, AdSCs injected with the chemical hydrogel into ischemic heart model mice showed longer retention of the cells at the injected site and recovery from the ischemic condition. The results mean that the IP system is a promising candidate for a stem cell delivery system that exhibits the recovery of cardiac function for myocardial infarction treatment.

8.
ACS Appl Bio Mater ; 4(4): 3079-3088, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35014396

RESUMEN

Postoperative adhesion remains a problem in surgery and causes postoperative complications. Laparoscopic surgery is now common, making it increasingly important to develop injectable formulations of adhesion barriers that can be applied during such surgeries. Temperature-responsive injectable polymer (IP) systems exhibiting a sol-to-gel transition in response to temperature are promising candidates as effective adhesion barriers that can be applied conveniently during laparoscopic surgery. We previously developed IP systems exhibiting temperature-responsive irreversible gelation based on a triblock copolymer of poly(ε-caprolactone-co-glycolic acid) (PCGA) and poly(ethylene glycol) (PEG) (PCGA-b-PEG-b-PCGA: tri-PCG) and a tri-PCG derivative with acrylate groups at the termini (tri-PCG-acryl). A mixture of tri-PCG-acryl micelle solution and tri-PCG micelle solution containing polythiol exhibited an irreversible sol-to-gel transition in response to a temperature increase. The gel contains partial covalent cross-linking, and the degradation and physical properties of these IP hydrogels can easily be controlled by changing the mixing ratio of tri-PCG-acryl in the formulation. In this study, we investigated the effect of physical properties of the IP hydrogel on the efficacy of adhesion prevention using our IP system containing various amounts of tri-PCG-acryl. Our results show that an IP system with lower physical strength and rapid degradation reduces adhesion more effectively. Chymase plays a crucial role in exacerbating adhesion formation, and a peptide derivative-type chymase inhibitor (CI), Suc-Val-Pro-PheP(OPh)2, was previously reported to prevent adhesion. We thus investigated the concomitant use of this CI with our IP system using two methods: separate administration of the CI and IP and entrapping the CI in the IP hydrogel. IP systems with separately administrated CI provided better results than the administration of an IP system entrapping the CI or sole IP systems. These findings suggest that the pharmacological effect of the CI and a physical barrier generated by our IP system effectively prevents adhesion.


Asunto(s)
Materiales Biocompatibles/farmacología , Quimasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Polímeros/farmacología , Temperatura , Adherencias Tisulares/prevención & control , Materiales Biocompatibles/química , Quimasas/metabolismo , Inhibidores Enzimáticos/química , Humanos , Ensayo de Materiales , Estructura Molecular , Tamaño de la Partícula , Polímeros/química
9.
Biomacromolecules ; 21(9): 3713-3723, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32786732

RESUMEN

A promising approach for the regeneration of tissues or organs with three-dimensional hierarchical structures is the preparation of scaffold-cell complexes that mimic these hierarchical structures. This requires an effective technique for immobilizing cell-specific ligands at arbitrarily chosen positions on matrices. Here, we report a versatile system for arranging cell-specific ligands onto desired compartments of biodegradable matrices for site-selective cell arrangement. We utilized the specific binding abilities of specific DNAs, immobilizing them as tags to arrange cell-recognition ligands at desired areas of the matrices by specific binding with cell-recognition ligand-DNA conjugates. We synthesized poly(l-lactide) (PLLA), a biodegradable polymer, with an oligo-DNA (trimer of deoxyguanosine: dG3) attached via a poly(ethylene glycol) (PEG) spacer to generate dG3-PEG-b-PLLA. The peptides Arg-Gly-Asp-Ser (RGDS) and Arg-Glu-Asp-Val (REDV) were chosen as cell-recognition ligands and were attached to an adapter DNA (aDNA), which can specifically bind to the dG3 moiety through G-quadruplex formation. The obtained dG3-PEG-b-PLLA was deposited on a small spot of the PLLA film, and the aDNA-RGDS or aDNA-REDV conjugate was added on the film to immobilize these ligands at the spot. We confirmed the specific adhesion of L929 cells (a mouse fibroblast cell line) and human umbilical vein endothelial cells (HUVECs) on the small areas coated with dG3-PEG-b-PLLA in the presence of aDNA-RGDS and aDNA-REDV, respectively, even after applying shear stress by flowing medium across the spot. Cell-specific attachment of the target cells was effectively achieved in a spatially controlled manner. This technique has the potential for the construction of cell-scaffold complexes that mimic the hierarchical structures of natural organs and may represent a breakthrough in realizing regenerative medicine and tissue engineering of complex organs.


Asunto(s)
Polietilenglicoles , Ingeniería de Tejidos , Animales , Adhesión Celular , ADN , Ligandos , Ratones
10.
Biomacromolecules ; 21(8): 3092-3101, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32649189

RESUMEN

Early-stage hemocompatibility is indispensable for manufacturing tissue-engineered vascular grafts used in regenerative medicine. In this study, we report the in vivo blood response and patency of small-diameter synthetic vascular grafts modified with the Arg-Glu-Asp-Val (REDV) peptide. Vascular grafts were prepared by casting REDV-conjugated poly(depsipeptide-co-caprolactone) on a stainless-steel mandril (diameter: 1.8 mm). After implanting the grafts into the abdominal aorta of rats for 24 h, all three control grafts without the peptide and three out of the four REDV (control sequence) peptide-modified grafts showed occlusion. The luminal surfaces of these grafts were covered with thick thrombi. In contrast, all the grafts containing the REDV peptide were patent, and their luminal surfaces were covered with a thin layer of fibrin. These results indicated that the REDV peptide on the luminal surface effectively reduced early-stage fibrin clot deposition and formed the pseudo-endothelium layer in a peptide sequence-specific manner, resulting in graft patency.


Asunto(s)
Trombosis , Injerto Vascular , Animales , Prótesis Vascular , Fibrina , Péptidos/farmacología , Ratas , Trombosis/tratamiento farmacológico
11.
J Biomed Mater Res A ; 108(10): 2005-2014, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32323458

RESUMEN

Because acellular vascular xenografts induce an immunological reaction through macrophage infiltration, they are conventionally crosslinked with glutaraldehyde (GA). However, the GA crosslinking reaction inhibits not only the host immune reaction around the graft but also the graft's enzymatic degradability, which is one of the key characteristics of acellular grafts that allow them to be replaced by host tissue. In this study, we used an 8-arm polyethylene glycol (PEG) to successfully suppress macrophage infiltration, without eliminating graft degradation. Decellularized ostrich carotid arteries were modified with GA or N-hydroxysuccinimide-activated 8-arm PEG (8-arm PEG-NHS), which has a molecular weight of 17 kDa. To evaluate the enzymatic degradation in vitro, the graft was immersed in a collagenase solution for 12 hr. The 8-arm PEG-modified graft was degraded to the same extent as the unmodified graft, but the GA-modified graft was not degraded. The graft was transplanted into rat subcutaneous tissue for up to 8 weeks. Although CD68-positive cells accumulated in the unmodified graft, they did not infiltrate into either modified graft. However, the GA-modified grafts calcified, but the 8-arm PEG-modified graft did not calcify after transplantation. These data suggested that 8-arm PEG-NHS is a promising modification agent for biodegradable vascular xenografts, to suppress acute macrophage infiltration only.


Asunto(s)
Implantes Absorbibles , Prótesis Vascular , Glutaral/química , Macrófagos/citología , Polietilenglicoles/química , Implantes Absorbibles/efectos adversos , Animales , Prótesis Vascular/efectos adversos , Arterias Carótidas/química , Reactivos de Enlaces Cruzados/química , Macrófagos/inmunología , Masculino , Ratas Sprague-Dawley , Struthioniformes
12.
J Biomater Sci Polym Ed ; 31(11): 1475-1488, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32338157

RESUMEN

Small-caliber artificial blood vessels with inner diameters of smaller than 4 mm have not been put into practical use because of early thrombus formation and graft occlusion. To realize small-caliber artificial blood vessels with anti-thrombus property and long-term patency, one of the promising approaches is endothelialization of the lumen by tissue engineering approaches. Integrin α4ß1 on the endothelial cell membrane is known to act as a receptor for Arg-Glu-Asp-Val (REDV) tetra-peptide, and this peptide can be used as a specific ligand to introduce endothelial cell attachment onto the surfaces of polymer scaffold. In this study, biodegradable polymer surface immobilizing REDV peptide were prepared, and the specific attachment of endothelial cells on it was investigated as a preliminary study for tissue-engineered small-caliber blood vessels in a future application. We synthesized copolymer of ε-caprolactone and depsipeptide having reactive carboxylic acid side-chain groups (PGDCL), and REDV peptide was attached to the copolymer to give PGDCL-REDV. The attachment of human umbilical vein endothelial cells (HUVECs) were investigated for the blend polymer film prepared by mixing PGDCL and PGDCL-REDV. The obtained blend polymer films exhibited sequence- and cell-specific HUVECs attachment through REDV peptide recognition. This technique should be useful not only to obtain artificial blood vessels which induce endothelialization and but also to provide biodegradable scaffolds with specific ligands immobilized surfaces for tissue regeneration.


Asunto(s)
Péptidos , Polímeros , Adhesión Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ingeniería de Tejidos
13.
Polymers (Basel) ; 11(10)2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31581736

RESUMEN

Application of Na+-responsive DNA quadruplex hydrogels, which utilize G-quadruplexes as crosslinking points of poly(ethylene glycol) (PEG) network as cell culture substrate, has been examined. PEG-oligodeoxynucleotide (ODN) conjugate, in which four deoxyguanosine (dG4) residues are tethered to both ends of PEG, was prepared by modified high-efficiency liquid phase (HELP) synthesis of oligonucleotides and used as the macromonomer. When mixed with equal volume of cell culture media, the solution of PEG-ODN turned into stiff hydrogel (G-quadruplex hydrogel) as the result of G-quadruplex formation by the dG4 segments in the presence of Na+. PEG-ODN itself did not show cytotoxicity and the resulting hydrogel was stable enough under cell culture conditions. However, L929 fibroblast cells cultured in G-quadruplex hydrogel remained spherical for a week, yet alive, without proliferation. The cells gradually sedimented through the gel day by day, probably due to the reversible nature of G-quadruplex formation and the resulting slow rearrangement of the macromonomers. Once they reached the bottom glass surface, the cells started to spread and proliferate.

14.
Nano Lett ; 19(6): 3933-3938, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31037942

RESUMEN

DNA has been well-known for its applications in programmable self-assembly of materials. Nonetheless, utility of DNA origami, which offers more opportunity to realize complicated operations, has been very limited. Here we report self-assembly of a biomolecular motor system, microtubule-kinesin mediated by DNA origami nanostructures. We demonstrate that a rodlike DNA origami motif facilitates self-assembly of microtubules into asters. A smooth-muscle like molecular contraction system has also been realized using the DNA origami in which self-assembled microtubules exhibited fast and dynamic contraction in the presence of kinesins through an energy dissipative process. This work provides potential nanotechnological applications of DNA and biomolecular motor proteins.


Asunto(s)
ADN/química , Cinesinas/química , Microtúbulos/química , Nanoestructuras/química , Microtúbulos/ultraestructura , Músculo Liso/química , Músculo Liso/ultraestructura , Nanoestructuras/ultraestructura , Nanotecnología , Conformación de Ácido Nucleico
15.
Int J Mol Sci ; 19(6)2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848964

RESUMEN

Nanogels, nanometer-sized hydrogel particles, have great potential as drug delivery carriers. To achieve effective drug delivery to the active sites in a cell, control of intracellular traffic is important. In this study, we prepared nanogels composed of dextran with oligolactide (OLA) chains attached via disulfide bonds (Dex-g-SS-OLA) that collapse under the reductive conditions of the cytosol to achieve efficient drug delivery. In addition, we introduced galactose (Gal) residues on the nanogels, to enhance cellular uptake by receptor-mediated endocytosis, and secondary oligo-amine (tetraethylenepentamine) groups, to aid in escape from endosomes via proton sponge effects. The obtained Dex-g-SS-OLA with attached Gal residues and tetraethylenepentamine (EI4) groups, EI4/Gal-Dex-g-SS-OLA, formed a nanogel with a hydrodynamic diameter of ca. 203 nm in phosphate-buffered solution. The collapse of the EI4/Gal-Dex-g-SS-OLA nanogels under reductive conditions was confirmed by a decrease in the hydrodynamic diameter in the presence of reductive agents. The specific uptake of the hydrogels into HepG2 cells and their intercellular behavior were investigated by flow cytometry and confocal laser scanning microscopy using fluorescence dye-labeled nanogels. Escape from the endosome and subsequent collapse in the cytosol of the EI4/Gal-Dex-g-SS-OLA were observed. These biodegradable nanogels that collapse under reductive conditions in the cytosol should have great potential as efficient drug carriers in, for example, cancer chemotherapy.


Asunto(s)
Materiales Biocompatibles/química , Dextranos/química , Nanopartículas/química , Polietilenglicoles/química , Polietileneimina/química , Sistemas de Liberación de Medicamentos/métodos , Citometría de Flujo , Células Hep G2 , Humanos , Microscopía Confocal , Nanogeles
16.
ACS Macro Lett ; 7(3): 295-299, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35632920

RESUMEN

A new pH-responsive hydrogel biomaterial, that is composed of solely two popular biocompatible materials, oligodeoxynucleotides (ODN) and polyethylene glycol (PEG) have been prepared. Merely five deoxycytidine residues were elongated to the ends of linear or 4-arm PEG in ×1000 larger scale than conventional systems by using liquid-phase DNA synthesis technique, and applied them as a macromonomer for the preparation of hydrogels. The syntheses of the conjugates are simply elongating ODN onto the ends of PEG as a semisolid phase substrate using standard phosphoramidite chemistry. The resulting dC5-PEG conjugates gave quite stable and stiff hydrogels triggered by the formation of a unique DNA quadruplex, i-motif. Introduction of only one chemical linkage between two linear conjugates resulted in unexpectedly high thermal stabilities for the melting temperatures of i-motifs themselves. Nonlinearly improved rheological properties compared to the original linear conjugates were also observed, probably because of topological entanglement between macromonomers of fused circles.

17.
Chem Asian J ; 12(18): 2388-2392, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28777486

RESUMEN

A new class of hydrogels utilizing DNA (DNA quadruplex gel) has been constructed by directly and symmetrically coupling deoxynucleotide phosphoramidite monomers to the ends of polyethylene glycols (PEGs) in liquid phase, and using the resulting DNA-PEG-DNA triblock copolymers as macromonomers. Elongation of merely four deoxyguanosine residues on PEG, which produces typically ≈10 grams of desired DNA-PEG conjugates in one synthesis, resulted in intelligent and biodegradable hydrogels utilizing DNA quadruplex formation, which are responsive to various input signals such as Na+ , K+ , and complementary DNA strand. Gelation of DNA quadruplex gels takes place within a few seconds upon the addition of a trigger, enabling free formation just like Ca+ -alginate hydrogels or possible application as an injectable polymer (IP) gel. The obtained hydrogels show good thermal stability and rheological properties, and even display self-healing ability.


Asunto(s)
G-Cuádruplex , Hidrogeles/química , Polietilenglicoles/química , Estructura Molecular
18.
Chem Commun (Camb) ; 53(59): 8276-8279, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28681899

RESUMEN

Significant enhancement of single-molecular binding to a miRNA target and bidentate and asymmetric conjugation of two distinct thiolated DNA strands to single gold nanoparticles (AuNPs) were visibly demonstrated, by introducing two groups of ligands into our nanomechanical DNA origami devices (DNA pliers) to construct allosterically controllable systems.


Asunto(s)
Fenómenos Biomecánicos , ADN/química , Oro/química , Nanopartículas del Metal/química , MicroARNs/química , Nanotecnología/métodos , Sitios de Unión , Ligandos , Microscopía de Fuerza Atómica
19.
Biomater Sci ; 5(7): 1304-1314, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28594018

RESUMEN

Here, we report biodegradable temperature-triggered covalent gelation systems exhibiting a longer and controllable duration time of the gel state by a "mixing strategy" utilizing a thiol-ene reaction. We synthesized a tri-block copolymer of poly(caprolactone-co-glycolic acid) and PEG (tri-PCG) as a temperature-responsive injectable polymer (IP) and attached acryloyl groups on both termini (tri-PCG-Acryl). A tri-PCG micelle solution containing hydrophobic hexa-functional polythiol (Solution-A) and a tri-PCG-Acryl micelle solution (Solution-B) were mixed together. After mixing, the solution was still in the sol state at r.t., but exhibited an irreversible sol-to-gel transition in response to temperature. The duration time of the gel state while soaking in PBS could be altered from 1 day to 93 days by changing the mixing ratio of Solution-A/B. The physical strengths of the hydrogels were also controllable by changing the mixing ratio. The IP system showed good biocompatibility and a long duration time of the gel state after subcutaneous implantation.


Asunto(s)
Poliésteres/química , Poliésteres/metabolismo , Polietilenglicoles/química , Animales , Femenino , Geles , Inyecciones , Ensayo de Materiales , Poliésteres/farmacología , Ratas , Ratas Sprague-Dawley , Temperatura , Factores de Tiempo
20.
J Biomater Sci Polym Ed ; 28(14): 1427-1443, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28494698

RESUMEN

On clinical application of biodegradable injectable polymer (IP) systems, quick extemporaneous preparation of IP formulations and longer duration time gel state after injection into the body are the important targets to be developed. Previously, we had reported temperature-responsive covalent gelation systems via bio-orthogonal thiol-ene reaction by 'mixing strategy' of amphiphilic biodegradable tri-block copolymer (tri-PCG) attaching acryloyl groups on both termini (tri-PCG-Acryl) with reactive polythiol. In other previous works, we found 'freeze-dry with PEG/dispersion' method as quick extemporaneous preparation method of biodegradable IP formulations. In this study, we applied this quick preparative method to the temperature-triggered covalent gelation system. The instant formulation (D-sample) could be prepared by 'freeze-dry with PEG/dispersion' just mixing of tri-PCG-Acryl micelle dispersion and tri-PCG/DPMP micelle dispersion with PEG, that can be prepared in 30 s from the dried samples. The obtained D-sample showed irreversible gelation and long duration time of gel state, which was basically the same as the formulations prepared by the usual heating dissolution method (S-sample). Interestingly, the D-sample could maintain its sol state for a longer time (24 h) after preparing the formulation at r.t. compared with the S-sample, which became a gel in 3 h after preparing. The IP system showed good biocompatibility and long duration time of the gel state after subcutaneous implantation. These characteristics of D-samples, quick extemporaneous preparation and high stability in the sol state before injection, would be very convenient in a clinical setting.


Asunto(s)
Materiales Biocompatibles/química , Polímeros/química , Temperatura , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Femenino , Geles , Interacciones Hidrofóbicas e Hidrofílicas , Inyecciones , Ensayo de Materiales , Micelas , Fenoles/química , Polietilenglicoles/química , Polímeros/metabolismo , Polímeros/farmacología , Pirimidinas/química , Ratas , Ratas Sprague-Dawley , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA