Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(21): eadj1564, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781347

RESUMEN

Resistance to therapy commonly develops in patients with high-grade serous ovarian carcinoma (HGSC) and triple-negative breast cancer (TNBC), urging the search for improved therapeutic combinations and their predictive biomarkers. Starting from a CRISPR knockout screen, we identified that loss of RB1 in TNBC or HGSC cells generates a synthetic lethal dependency on casein kinase 2 (CK2) for surviving the treatment with replication-perturbing therapeutics such as carboplatin, gemcitabine, or PARP inhibitors. CK2 inhibition in RB1-deficient cells resulted in the degradation of another RB family cell cycle regulator, p130, which led to S phase accumulation, micronuclei formation, and accelerated PARP inhibition-induced aneuploidy and mitotic cell death. CK2 inhibition was also effective in primary patient-derived cells. It selectively prevented the regrowth of RB1-deficient patient HGSC organoids after treatment with carboplatin or niraparib. As about 25% of HGSCs and 40% of TNBCs have lost RB1 expression, CK2 inhibition is a promising approach to overcome resistance to standard therapeutics in large strata of patients.


Asunto(s)
Quinasa de la Caseína II , Proteínas de Unión a Retinoblastoma , Humanos , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Proteínas de Unión a Retinoblastoma/metabolismo , Proteínas de Unión a Retinoblastoma/genética , Femenino , Línea Celular Tumoral , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Carboplatino/farmacología , Mutaciones Letales Sintéticas , Replicación del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/farmacología
2.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562799

RESUMEN

To uncover the intricate, chemotherapy-induced spatiotemporal remodeling of the tumor microenvironment, we conducted integrative spatial and molecular characterization of 97 high-grade serous ovarian cancer (HGSC) samples collected before and after chemotherapy. Using single-cell and spatial analyses, we identify increasingly versatile immune cell states, which form spatiotemporally dynamic microcommunities at the tumor-stroma interface. We demonstrate that chemotherapy triggers spatial redistribution and exhaustion of CD8+ T cells due to prolonged antigen presentation by macrophages, both within interconnected myeloid networks termed "Myelonets" and at the tumor stroma interface. Single-cell and spatial transcriptomics identifies prominent TIGIT-NECTIN2 ligand-receptor interactions induced by chemotherapy. Using a functional patient-derived immuno-oncology platform, we show that CD8+T-cell activity can be boosted by combining immune checkpoint blockade with chemotherapy. Our discovery of chemotherapy-induced myeloid-driven spatial T-cell exhaustion paves the way for novel immunotherapeutic strategies to unleash CD8+ T-cell-mediated anti-tumor immunity in HGSC.

3.
Neoplasia ; 51: 100987, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38489912

RESUMEN

Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia , Resistencia a Antineoplásicos , Sistema de Señalización de MAP Quinasas , Proteínas de Fusión Oncogénica , Neoplasias Ováricas , Fosfatidilinositol 3-Quinasas , Femenino , Humanos , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Resistencia a Antineoplásicos/genética , Sistema de Señalización de MAP Quinasas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Platino (Metal) , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo
4.
BMC Cancer ; 24(1): 173, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317080

RESUMEN

Copy-number alterations (CNAs) are a hallmark of cancer and can regulate cancer cell states via altered gene expression values. Herein, we have developed a copy-number impact (CNI) analysis method that quantifies the degree to which a gene expression value is impacted by CNAs and leveraged this analysis at the pathway level. Our results show that a high CNA is not necessarily reflected at the gene expression level, and our method is capable of detecting genes and pathways whose activity is strongly influenced by CNAs. Furthermore, the CNI analysis enables unbiased categorization of CNA categories, such as deletions and amplifications. We identified six CNI-driven pathways associated with poor treatment response in ovarian high-grade serous carcinoma (HGSC), which we found to be the most CNA-driven cancer across 14 cancer types. The key driver in most of these pathways was amplified wild-type KRAS, which we validated functionally using CRISPR modulation. Our results suggest that wild-type KRAS amplification is a driver of chemotherapy resistance in HGSC and may serve as a potential treatment target.


Asunto(s)
Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Genoma , Variaciones en el Número de Copia de ADN , Carcinoma/genética , Expresión Génica
5.
Gynecol Oncol ; 180: 91-98, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061276

RESUMEN

OBJECTIVES: We evaluated usability of single base substitution signature 3 (Sig3) as a biomarker for homologous recombination deficiency (HRD) in tubo-ovarian high-grade serous carcinoma (HGSC). MATERIALS AND METHODS: This prospective observational trial includes 165 patients with advanced HGSC. Fresh tissue samples (n = 456) from multiple intra-abdominal areas at diagnosis and after neoadjuvant chemotherapy (NACT) were collected for whole-genome sequencing. Sig3 was assessed by fitting samples independently with COSMIC v3.2 reference signatures. An HR scar assay was applied for comparison. Progression-free survival (PFS) and overall survival (OS) were studied using Kaplan-Meier and Cox regression analysis. RESULTS: Sig3 has a bimodal distribution, eliminating the need for an arbitrary cutoff typical in HR scar tests. Sig3 could be assessed from samples with low (10%) cancer cell proportion and was consistent between multiple samples and stable during NACT. At diagnosis, 74 (45%) patients were HRD (Sig3+), while 91 (55%) were HR proficient (HRP, Sig3-). Sig3+ patients had longer PFS and OS than Sig3- patients (22 vs. 13 months and 51 vs. 34 months respectively, both p < 0.001). Sig3 successfully distinguished the poor prognostic HRP group among BRCAwt patients (PFS 19 months for Sig3+ and 13 months for Sig3- patients, p < 0.001). However, Sig3 at diagnosis did not predict chemoresponse anymore in the first relapse. The patient-level concordance between Sig3 and HR scar assay was 87%, and patients with HRD according to both tests had the longest median PFS. CONCLUSIONS: Sig3 is a prognostic marker in advanced HGSC and useful tool in patient stratification for HRD.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Cicatriz/patología , Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Pronóstico , Supervivencia sin Progresión
6.
STAR Protoc ; 4(4): 102683, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976153

RESUMEN

Patient-derived organoids (PDOs) are ideal ex vivo model systems to study cancer progression and drug resistance mechanisms. Here, we present a protocol for measuring drug efficacy in three-dimensional (3D) high-grade serous ovarian cancer PDO cultures through quantification of cytotoxicity using propidium iodide incorporation in dead cells. We also provide detailed steps to analyze proliferation of PDOs using the Ki67 biomarker. We describe steps for sample processing, immunofluorescent staining, high-throughput confocal imaging, and image-based quantification for 3D cultures. For complete details on the use and execution of this protocol, please refer to Lahtinen et al. (2023).1.


Asunto(s)
Imagenología Tridimensional , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/tratamiento farmacológico , Muerte Celular , Organoides , Proliferación Celular
7.
Biomed Pharmacother ; 168: 115630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806091

RESUMEN

Circulating tumor DNA (ctDNA) analysis has emerged as a promising tool for detecting and profiling longitudinal genomics changes in cancer. While copy-number alterations (CNAs) play a major role in cancers, treatment effect monitoring using copy-number profiles has received limited attention as compared to mutations. A major reason for this is the insensitivity of CNA analysis for the real-life tumor-fraction ctDNA samples. We performed copy-number analysis on 152 plasma samples obtained from 29 patients with high-grade serous ovarian cancer (HGSC) using a sequencing panel targeting over 500 genes. Twenty-one patients had temporally matched tissue and plasma sample pairs, which enabled assessing concordance with tissues sequenced with the same panel or whole-genome sequencing and to evaluate sensitivity. Our approach could detect concordant CNA profiles in most plasma samples with as low as 5% tumor content and highly amplified regions in samples with ∼1% of tumor content. Longitudinal profiles showed changes in the CNA profiles in seven out of 11 patients with high tumor-content plasma samples at relapse. These changes included focal acquired or lost copy-numbers, even though most of the genome remained stable. Two patients displayed major copy-number profile changes during therapy. Our analysis revealed ctDNA-detectable subclonal selection resulting from both surgical operations and chemotherapy. Overall, longitudinal ctDNA data showed acquired and diminished CNAs at relapse when compared to pre-treatment samples. These results highlight the importance of genomic profiling during treatment as well as underline the usability of ctDNA.


Asunto(s)
Carcinoma , ADN Tumoral Circulante , Humanos , ADN Tumoral Circulante/genética , Mutación/genética , Variaciones en el Número de Copia de ADN/genética , Recurrencia , Biomarcadores de Tumor/genética
8.
Cancer Cell ; 41(6): 1103-1117.e12, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37207655

RESUMEN

Ovarian high-grade serous carcinoma (HGSC) is typically diagnosed at an advanced stage, with multiple genetically heterogeneous clones existing in the tumors long before therapeutic intervention. Herein we integrate clonal composition and topology using whole-genome sequencing data from 510 samples of 148 patients with HGSC in the prospective, longitudinal, multiregion DECIDER study. Our results reveal three evolutionary states, which have distinct features in genomics, pathways, and morphological phenotypes, and significant association with treatment response. Nested pathway analysis suggests two evolutionary trajectories between the states. Experiments with five tumor organoids and three PI3K inhibitors support targeting tumors with enriched PI3K/AKT pathway with alpelisib. Heterogeneity analysis of samples from multiple anatomical sites shows that site-of-origin samples have 70% more unique clones than metastatic tumors or ascites. In conclusion, these analysis and visualization methods enable integrative tumor evolution analysis to identify patient subtypes using data from longitudinal, multiregion cohorts.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias de las Trompas Uterinas , Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/patología , Fosfatidilinositol 3-Quinasas/genética , Estudios Prospectivos , Cistadenocarcinoma Seroso/metabolismo , Neoplasias de las Trompas Uterinas/genética
9.
Dev Cell ; 58(12): 1106-1121.e7, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37148882

RESUMEN

The broad research use of organoids from high-grade serous ovarian cancer (HGSC) has been hampered by low culture success rates and limited availability of fresh tumor material. Here, we describe a method for generation and long-term expansion of HGSC organoids with efficacy markedly improved over previous reports (53% vs. 23%-38%). We established organoids from cryopreserved material, demonstrating the feasibility of using viably biobanked tissue for HGSC organoid derivation. Genomic, histologic, and single-cell transcriptomic analyses revealed that organoids recapitulated genetic and phenotypic features of original tumors. Organoid drug responses correlated with clinical treatment outcomes, although in a culture conditions-dependent manner and only in organoids maintained in human plasma-like medium (HPLM). Organoids from consenting patients are available to the research community through a public biobank and organoid genomic data are explorable through an interactive online tool. Taken together, this resource facilitates the application of HGSC organoids in basic and translational ovarian cancer research.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Organoides/patología , Genómica
10.
Clin Cancer Res ; 29(16): 3110-3123, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805632

RESUMEN

PURPOSE: Deficiency in homologous recombination (HR) repair of DNA damage is characteristic of many high-grade serous ovarian cancers (HGSC). It is imperative to identify patients with homologous recombination-deficient (HRD) tumors as they are most likely to benefit from platinum-based chemotherapy and PARP inhibitors (PARPi). Existing methods measure historical, not necessarily current HRD and/or require high tumor cell content, which is not achievable for many patients. We set out to develop a clinically feasible assay for identifying functionally HRD tumors that can predict clinical outcomes. EXPERIMENTAL DESIGN: We quantified RAD51, a key HR protein, in immunostained formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained from chemotherapy-naïve and neoadjuvant chemotherapy (NACT)-treated HGSC patients. We defined cutoffs for functional HRD separately for these sample types, classified the patients accordingly as HRD or HR-proficient, and analyzed correlations with clinical outcomes. From the same specimens, genomics-based HRD estimates (HR gene mutations, genomic signatures, and genomic scars) were also determined, and compared with functional HR (fHR) status. RESULTS: fHR status significantly predicted several clinical outcomes, including progression-free survival (PFS) and overall survival (OS), when determined from chemo-naïve (PFS, P < 0.0001; OS, P < 0.0001) as well as NACT-treated (PFS, P < 0.0001; OS, P = 0.0033) tumor specimens. The fHR test also identified as HRD those PARPi-at-recurrence-treated patients with longer OS (P = 0.0188). CONCLUSIONS: We developed an fHR assay performed on routine FFPE specimens, obtained from either chemo-naïve or NACT-treated HGSC patients, that can significantly predict real-world platinum-based chemotherapy and PARPi response. See related commentary by Garg and Oza, p. 2957.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Recombinación Homóloga/genética , Mutación , Reparación del ADN por Recombinación/genética , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico
11.
NPJ Precis Oncol ; 6(1): 96, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36581696

RESUMEN

Homologous recombination DNA-repair deficiency (HRD) is a common driver of genomic instability and confers a therapeutic vulnerability in cancer. The accurate detection of somatic allelic imbalances (AIs) has been limited by methods focused on BRCA1/2 mutations and using mixtures of cancer types. Using pan-cancer data, we revealed distinct patterns of AIs in high-grade serous ovarian cancer (HGSC). We used machine learning and statistics to generate improved criteria to identify HRD in HGSC (ovaHRDscar). ovaHRDscar significantly predicted clinical outcomes in three independent patient cohorts with higher precision than previous methods. Characterization of 98 spatiotemporally distinct metastatic samples revealed low intra-patient variation and indicated the primary tumor as the preferred site for clinical sampling in HGSC. Further, our approach improved the prediction of clinical outcomes in triple-negative breast cancer (tnbcHRDscar), validated in two independent patient cohorts. In conclusion, our tumor-specific, systematic approach has the potential to improve patient selection for HR-targeted therapies.

12.
Front Oncol ; 12: 954430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081565

RESUMEN

Objective: A major challenge in the treatment of platinum-resistant high-grade serous ovarian cancer (HGSOC) is lack of effective therapies. Much of ongoing research on drug candidates relies on HGSOC cell lines that are poorly documented. The goal of this study was to screen for effective, state-of-the-art drug candidates using primary HGSOC cells. In addition, our aim was to dissect the inhibitory activities of Wee1 inhibitor adavosertib on primary and conventional HGSOC cell lines. Methods: A comprehensive drug sensitivity and resistance testing (DSRT) on 306 drug compounds was performed on three patient-derived genetically unique HGSOC cell lines and two commonly used ovarian cancer cell lines. The effect of adavosertib on the cell lines was tested in several assays, including cell-cycle analysis, apoptosis induction, proliferation, wound healing, DNA damage, and effect on nuclear integrity. Results: Several compounds exerted cytotoxic activity toward all cell lines, when tested in both adherent and spheroid conditions. In further cytotoxicity tests, adavosertib exerted the most consistent cytotoxic activity. Adavosertib affected cell-cycle control in patient-derived and conventional HGSOC cells, inducing G2/M accumulation and reducing cyclin B1 levels. It induced apoptosis and inhibited proliferation and migration in all cell lines. Furthermore, the DNA damage marker γH2AX and the number of abnormal cell nuclei were clearly increased following adavosertib treatment. Based on the homologous recombination (HR) signature and functional HR assays of the cell lines, the effects of adavosertib were independent of the cells' HR status. Conclusion: Our study indicates that Wee1 inhibitor adavosertib affects several critical functions related to proliferation, cell cycle and division, apoptosis, and invasion. Importantly, the effects are consistent in all tested cell lines, including primary HGSOC cells, and independent of the HR status of the cells. Wee1 inhibition may thus provide treatment opportunities especially for patients, whose cancer has acquired resistance to platinum-based chemotherapy or PARP inhibitors.

13.
Lab Invest ; 102(7): 753-761, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35169222

RESUMEN

RNA in situ hybridization (RNA-ISH) is a powerful spatial transcriptomics technology to characterize target RNA abundance and localization in individual cells. This allows analysis of tumor heterogeneity and expression localization, which are not readily obtainable through transcriptomic data analysis. RNA-ISH experiments produce large amounts of data and there is a need for automated analysis methods. Here we present QuantISH, a comprehensive open-source RNA-ISH image analysis pipeline that quantifies marker expressions in individual carcinoma, immune, and stromal cells on chromogenic or fluorescent in situ hybridization images. QuantISH is designed to be modular and can be adapted to various image and sample types and staining protocols. We show that in chromogenic RNA in situ hybridization images of high-grade serous carcinoma (HGSC) QuantISH cancer cell classification has high precision, and signal expression quantification is in line with visual assessment. We further demonstrate the power of QuantISH by showing that CCNE1 average expression and DDIT3 expression variability, as captured by the variability factor developed herein, act as candidate biomarkers in HGSC. Altogether, our results demonstrate that QuantISH can quantify RNA expression levels and their variability in carcinoma cells, and thus paves the way to utilize RNA-ISH technology.


Asunto(s)
Biomarcadores de Tumor , ARN , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica , Hibridación in Situ , Hibridación Fluorescente in Situ/métodos , ARN/genética
14.
Sci Adv ; 8(8): eabm1831, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35196078

RESUMEN

Chemotherapy resistance is a critical contributor to cancer mortality and thus an urgent unmet challenge in oncology. To characterize chemotherapy resistance processes in high-grade serous ovarian cancer, we prospectively collected tissue samples before and after chemotherapy and analyzed their transcriptomic profiles at a single-cell resolution. After removing patient-specific signals by a novel analysis approach, PRIMUS, we found a consistent increase in stress-associated cell state during chemotherapy, which was validated by RNA in situ hybridization and bulk RNA sequencing. The stress-associated state exists before chemotherapy, is subclonally enriched during the treatment, and associates with poor progression-free survival. Co-occurrence with an inflammatory cancer-associated fibroblast subtype in tumors implies that chemotherapy is associated with stress response in both cancer cells and stroma, driving a paracrine feed-forward loop. In summary, we have found a resistant state that integrates stromal signaling and subclonal evolution and offers targets to overcome chemotherapy resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Ováricas , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Análisis de Secuencia de ARN , Transcriptoma , Secuenciación del Exoma
15.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34343245

RESUMEN

Each patient's cancer consists of multiple cell subpopulations that are inherently heterogeneous and may develop differing phenotypes such as drug sensitivity or resistance. A personalized treatment regimen should therefore target multiple oncoproteins in the cancer cell populations that are driving the treatment resistance or disease progression in a given patient to provide maximal therapeutic effect, while avoiding severe co-inhibition of non-malignant cells that would lead to toxic side effects. To address the intra- and inter-tumoral heterogeneity when designing combinatorial treatment regimens for cancer patients, we have implemented a machine learning-based platform to guide identification of safe and effective combinatorial treatments that selectively inhibit cancer-related dysfunctions or resistance mechanisms in individual patients. In this case study, we show how the platform enables prediction of cancer-selective drug combinations for patients with high-grade serous ovarian cancer using single-cell imaging cytometry drug response assay, combined with genome-wide transcriptomic and genetic profiles. The platform makes use of drug-target interaction networks to prioritize those combinations that warrant further preclinical testing in scarce patient-derived primary cells. During the case study in ovarian cancer patients, we investigated (i) the relative performance of various ensemble learning algorithms for drug response prediction, (ii) the use of matched single-cell RNA-sequencing data to deconvolute cell population-specific transcriptome profiles from bulk RNA-seq data, (iii) and whether multi-patient or patient-specific predictive models lead to better predictive accuracy. The general platform and the comparison results are expected to become useful for future studies that use similar predictive approaches also in other cancer types.


Asunto(s)
Neoplasias Ováricas/terapia , Algoritmos , Terapia Combinada , Femenino , Humanos , Células Tumorales Cultivadas
16.
Cancer Res ; 81(10): 2774-2787, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33514515

RESUMEN

Homologous recombination (HR)-deficient cancers are sensitive to poly-ADP ribose polymerase inhibitors (PARPi), which have shown clinical efficacy in the treatment of high-grade serous cancers (HGSC). However, the majority of patients will relapse, and acquired PARPi resistance is emerging as a pressing clinical problem. Here we generated seven single-cell clones with acquired PARPi resistance derived from a PARPi-sensitive TP53 -/- and BRCA1 -/- epithelial cell line generated using CRISPR/Cas9. These clones showed diverse resistance mechanisms, and some clones presented with multiple mechanisms of resistance at the same time. Genomic analysis of the clones revealed unique transcriptional and mutational profiles and increased genomic instability in comparison with a PARPi-sensitive cell line. Clonal evolutionary analyses suggested that acquired PARPi resistance arose via clonal selection from an intrinsically unstable and heterogenous cell population in the sensitive cell line, which contained preexisting drug-tolerant cells. Similarly, clonal and spatial heterogeneity in tumor biopsies from a clinical patient with BRCA1-mutant HGSC with acquired PARPi resistance was observed. In an imaging-based drug screening, the clones showed heterogenous responses to targeted therapeutic agents, indicating that not all PARPi-resistant clones can be targeted with just one therapy. Furthermore, PARPi-resistant clones showed mechanism-dependent vulnerabilities to the selected agents, demonstrating that a deeper understanding on the mechanisms of resistance could lead to improved targeting and biomarkers for HGSC with acquired PARPi resistance. SIGNIFICANCE: This study shows that BRCA1-deficient cells can give rise to multiple genomically and functionally heterogenous PARPi-resistant clones, which are associated with various vulnerabilities that can be targeted in a mechanism-specific manner.


Asunto(s)
Proteína BRCA1/fisiología , Evolución Clonal , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína p53 Supresora de Tumor/fisiología , Animales , Apoptosis , Proliferación Celular , Femenino , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Ratones , Ratones Noqueados , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Transcriptoma , Células Tumorales Cultivadas
17.
Cancer Discov ; 11(2): 384-407, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33158843

RESUMEN

Despite advances in immuno-oncology, the relationship between tumor genotypes and response to immunotherapy remains poorly understood, particularly in high-grade serous tubo-ovarian carcinomas (HGSC). We developed a series of mouse models that carry genotypes of human HGSCs and grow in syngeneic immunocompetent hosts to address this gap. We transformed murine-fallopian tube epithelial cells to phenocopy homologous recombination-deficient tumors through a combined loss of Trp53, Brca1, Pten, and Nf1 and overexpression of Myc and Trp53 R172H, which was contrasted with an identical model carrying wild-type Brca1. For homologous recombination-proficient tumors, we constructed genotypes combining loss of Trp53 and overexpression of Ccne1, Akt2, and Trp53 R172H, and driven by KRAS G12V or Brd4 or Smarca4 overexpression. These lines form tumors recapitulating human disease, including genotype-driven responses to treatment, and enabled us to identify follistatin as a driver of resistance to checkpoint inhibitors. These data provide proof of concept that our models can identify new immunotherapy targets in HGSC. SIGNIFICANCE: We engineered a panel of murine fallopian tube epithelial cells bearing mutations typical of HGSC and capable of forming tumors in syngeneic immunocompetent hosts. These models recapitulate tumor microenvironments and drug responses characteristic of human disease. In a Ccne1-overexpressing model, immune-checkpoint resistance was driven by follistatin.This article is highlighted in the In This Issue feature, p. 211.


Asunto(s)
Cistadenocarcinoma Seroso/tratamiento farmacológico , Modelos Animales de Enfermedad , Neoplasias de las Trompas Uterinas/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Animales , Cistadenocarcinoma Seroso/genética , Quimioterapia Combinada , Neoplasias de las Trompas Uterinas/genética , Femenino , Ratones Transgénicos , Neoplasias Ováricas/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-32914024

RESUMEN

PURPOSE: Circulating tumor DNA (ctDNA) detection is a minimally invasive technique that offers dynamic molecular snapshots of genomic alterations in cancer. Although ctDNA markers can be used for early detection of cancers or for monitoring treatment efficacy, the value of ctDNA in guiding treatment decisions in solid cancers is controversial. Here, we monitored ctDNA to detect clinically actionable alterations during treatment of high-grade serous ovarian cancer, the most common and aggressive form of epithelial ovarian cancer with a 5-year survival rate of 43%. PATIENTS AND METHODS: We implemented a clinical ctDNA workflow to detect clinically actionable alterations in more than 500 cancer-related genes. We applied the workflow to a prospective cohort consisting of 78 ctDNA samples from 12 patients with high-grade serous ovarian cancer before, during, and after treatment. These longitudinal data sets were analyzed using our open-access ctDNA-tailored bioinformatics analysis pipeline and in-house Translational Oncology Knowledgebase to detect clinically actionable genomic alterations. The alterations were ranked according to the European Society for Medical Oncology scale for clinical actionability of molecular targets. RESULTS: Our results show good concordance of mutations and copy number alterations in ctDNA and tumor samples, and alterations associated with clinically available drugs were detected in seven patients (58%). Treatment of one chemoresistant patient was changed on the basis of detection of ERBB2 amplification, and this ctDNA-guided decision was followed by significant tumor shrinkage and complete normalization of the cancer antigen 125 tumor marker. CONCLUSION: Our results demonstrate a proof of concept for using ctDNA to guide clinical decisions. Furthermore, our results show that longitudinal ctDNA samples can be used to identify poor-responding patients after first cycles of chemotherapy. We provide what we believe to be the first comprehensive, open-source ctDNA workflow for detecting clinically actionable alterations in solid cancers.

20.
Sci Rep ; 6: 39707, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-28004803

RESUMEN

To obtain aggregate evidence for the molecular basis of musical abilities and the effects of music, we integrated gene-level data from 105 published studies across multiple species including humans, songbirds and several other animals and used a convergent evidence method to prioritize the top candidate genes. Several of the identified top candidate genes like EGR1, FOS, ARC, BDNF and DUSP1 are known to be activity-dependent immediate early genes that respond to sensory and motor stimuli in the brain. Several other top candidate genes like MAPK10, SNCA, ARHGAP24, TET2, UBE2D3, FAM13A and NUDT9 are located on chromosome 4q21-q24, on the candidate genomic region for music abilities in humans. Functional annotation analyses showed the enrichment of genes involved in functions like cognition, learning, memory, neuronal excitation and apoptosis, long-term potentiation and CDK5 signaling pathway. Interestingly, all these biological functions are known to be essential processes underlying learning and memory that are also fundamental for musical abilities including recognition and production of sound. In summary, our study prioritized top candidate genes related to musical traits.


Asunto(s)
Proteínas Aviares/genética , Cromosomas Humanos Par 4/genética , Música , Carácter Cuantitativo Heredable , Pájaros Cantores/genética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...