Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6411, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828018

RESUMEN

Progress in neuroscience research hinges on technical advances in visualizing living brain tissue with high fidelity and facility. Current neuroanatomical imaging approaches either require tissue fixation (electron microscopy), do not have cellular resolution (magnetic resonance imaging) or only give a fragmented view (fluorescence microscopy). Here, we show how regular light microscopy together with fluorescence labeling of the interstitial fluid in the extracellular space provide comprehensive optical access in real-time to the anatomical complexity and dynamics of living brain tissue at submicron scale. Using several common fluorescence microscopy modalities (confocal, light-sheet and 2-photon microscopy) in mouse organotypic and acute brain slices and the intact mouse brain in vivo, we demonstrate the value of this straightforward 'shadow imaging' approach by revealing neurons, microglia, tumor cells and blood capillaries together with their complete anatomical tissue contexts. In addition, we provide quantifications of perivascular spaces and the volume fraction of the extracellular space of brain tissue in vivo.


Asunto(s)
Encéfalo , Neuronas , Ratones , Animales , Encéfalo/diagnóstico por imagen , Microscopía Fluorescente/métodos , Espacio Extracelular , Cabeza
2.
Cancer Metab ; 8: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32789014

RESUMEN

BACKGROUND: Glioblastoma (GBM) are highly heterogeneous on the cellular and molecular basis. It has been proposed that glutamine metabolism of primary cells established from human tumors discriminates aggressive mesenchymal GBM subtype to other subtypes. METHODS: To study glutamine metabolism in vivo, we used a human orthotopic mouse model for GBM. Tumors evolving from the implanted primary GBM cells expressing different molecular signatures were analyzed using mass spectrometry for their metabolite pools and enrichment in carbon 13 (13C) after 13C-glutamine infusion. RESULTS: Our results showed that mesenchymal GBM tumors displayed increased glutamine uptake and utilization compared to both control brain tissue and other GBM subtypes. Furthermore, both glutamine synthetase and transglutaminase-2 were expressed accordingly to GBM metabolic phenotypes. CONCLUSION: Thus, our results outline the specific enhanced glutamine flux in vivo of the aggressive mesenchymal GBM subtype.

3.
Cell Death Dis ; 11(5): 310, 2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32366892

RESUMEN

Formate is a precursor for the de novo synthesis of purine and deoxythymidine nucleotides. Formate also interacts with energy metabolism by promoting the synthesis of adenine nucleotides. Here we use theoretical modelling together with metabolomics analysis to investigate the link between formate, nucleotide and energy metabolism. We uncover that endogenous or exogenous formate induces a metabolic switch from low to high adenine nucleotide levels, increasing the rate of glycolysis and repressing the AMPK activity. Formate also induces an increase in the pyrimidine precursor orotate and the urea cycle intermediate argininosuccinate, in agreement with the ATP-dependent activities of carbamoyl-phosphate and argininosuccinate synthetase. In vivo data for mouse and human cancers confirms the association between increased formate production, nucleotide and energy metabolism. Finally, the in vitro observations are recapitulated in mice following and intraperitoneal injection of formate. We conclude that formate is a potent regulator of purine, pyrimidine and energy metabolism.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Formiatos/farmacología , Nucleótidos/metabolismo , Adenosina Trifosfato/farmacología , Adenilato Quinasa/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacología , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Modelos Biológicos , Modelos Genéticos , Ácido Orótico/metabolismo , Pirimidinas/metabolismo , Ribonucleótidos/farmacología
4.
Nat Commun ; 9(1): 1368, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636461

RESUMEN

Formate overflow coupled to mitochondrial oxidative metabolism\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.


Asunto(s)
Adenoma/metabolismo , Formiatos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Intestinales/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Serina/metabolismo , Adenoma/genética , Adenoma/patología , Animales , Antimetabolitos Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Formiatos/farmacología , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestinos/patología , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/virología , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/virología , Virus del Tumor Mamario del Ratón/patogenicidad , Metotrexato/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción , Microambiente Tumoral/efectos de los fármacos
5.
Clin Cancer Res ; 23(20): 6292-6304, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28720668

RESUMEN

Purpose: Glioblastoma (GBM) is the most common and malignant form of primary human brain tumor in adults, with an average survival at diagnosis of 18 months. Metabolism is a new attractive therapeutic target in cancer; however, little is known about metabolic heterogeneity and plasticity within GBM tumors. We therefore aimed to investigate metabolic phenotyping of primary cultures in the context of molecular tumor heterogeneity to provide a proof of concept for personalized metabolic targeting of GBM.Experimental Design: We have analyzed extensively several primary GBM cultures using transcriptomics, metabolic phenotyping assays, and mitochondrial respirometry.Results: We found that metabolic phenotyping clearly identifies 2 clusters, GLNHigh and GLNLow, mainly based on metabolic plasticity and glutamine (GLN) utilization. Inhibition of glutamine metabolism slows the in vitro and in vivo growth of GLNHigh GBM cultures despite metabolic adaptation to nutrient availability, in particular by increasing pyruvate shuttling into mitochondria. Furthermore, phenotypic and molecular analyses show that highly proliferative GLNHigh cultures are CD133neg and display a mesenchymal signature in contrast to CD133pos GLNLow GBM cells.Conclusions: Our results show that metabolic phenotyping identified an essential metabolic pathway in a GBM cell subtype, and provide a proof of concept for theranostic metabolic targeting. Clin Cancer Res; 23(20); 6292-304. ©2017 AACR.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glutamina/metabolismo , Mitocondrias/metabolismo , Animales , Biomarcadores , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Biología Computacional/métodos , Modelos Animales de Enfermedad , Metabolismo Energético , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glucosa/metabolismo , Xenoinjertos , Humanos , Metabolómica/métodos , Ratones , Modelos Biológicos , Fenotipo
6.
Oncotarget ; 6(9): 6840-9, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25749386

RESUMEN

Glioblastoma Multiforme (GBM) is the most common brain cancer in adults. Radiotherapy (RT) is the most effective post-operative treatment for the patients even though GBM is one of the most radio-resistant tumors. Dead or dying cells within the tumor are thought to promote resistance to treatment through mechanisms that are very poorly understood. We have evaluated the role of Prostaglandin E2 (PGE2), a versatile bioactive lipid, in GBM radio-resistance. We used an in vitro approach using 3D primary cultures derived from representative GBM patients. We show that irradiated glioma cells produced and released PGE2 in important quantities independently of the induction of cell death. We demonstrate that the addition of PGE2 enhances cell survival and proliferation though its ability to trans-activate the Epithelial Growth Factor receptor (EGFR) and to activate ß-catenin. Indeed, PGE2 can substitute for EGF to promote primary cultures survival and growth in vitro and the effect is likely to occur though the Prostaglandin E2 receptor EP2.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Dinoprostona/genética , Familia de Proteínas EGF/metabolismo , Glioblastoma/metabolismo , Transducción de Señal , Apoptosis , Neoplasias Encefálicas/radioterapia , Caspasa 3/metabolismo , Proliferación Celular , Supervivencia Celular , Glioblastoma/radioterapia , Humanos , Lípidos/química , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Células Tumorales Cultivadas/efectos de los fármacos , beta Catenina/metabolismo
7.
Int J Cell Biol ; 2013: 805975, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23476653

RESUMEN

Abnormal metabolism and the evasion of apoptosis are considered hallmarks of cancers. Accumulating evidence shows that cancer stem cells are key drivers of tumor formation, progression, and recurrence. A successful therapy must therefore eliminate these cells known to be highly resistant to apoptosis. In this paper, we describe the metabolic changes as well as the mechanisms of resistance to apoptosis occurring in cancer cells and cancer stem cells, underlying the connection between these two processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...