Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 18(2): e1009855, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35143481

RESUMEN

Antimicrobial resistance presents a significant health care crisis. The mutation F98Y in Staphylococcus aureus dihydrofolate reductase (SaDHFR) confers resistance to the clinically important antifolate trimethoprim (TMP). Propargyl-linked antifolates (PLAs), next generation DHFR inhibitors, are much more resilient than TMP against this F98Y variant, yet this F98Y substitution still reduces efficacy of these agents. Surprisingly, differences in the enantiomeric configuration at the stereogenic center of PLAs influence the isomeric state of the NADPH cofactor. To understand the molecular basis of F98Y-mediated resistance and how PLAs' inhibition drives NADPH isomeric states, we used protein design algorithms in the osprey protein design software suite to analyze a comprehensive suite of structural, biophysical, biochemical, and computational data. Here, we present a model showing how F98Y SaDHFR exploits a different anomeric configuration of NADPH to evade certain PLAs' inhibition, while other PLAs remain unaffected by this resistance mechanism.


Asunto(s)
Antagonistas del Ácido Fólico , Infecciones Estafilocócicas , Farmacorresistencia Bacteriana/genética , Antagonistas del Ácido Fólico/química , Antagonistas del Ácido Fólico/farmacología , Humanos , NADP/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tetrahidrofolato Deshidrogenasa/química , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo , Trimetoprim/química , Trimetoprim/metabolismo , Trimetoprim/farmacología
2.
PLoS Comput Biol ; 16(6): e1007447, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32511232

RESUMEN

The K* algorithm provably approximates partition functions for a set of states (e.g., protein, ligand, and protein-ligand complex) to a user-specified accuracy ε. Often, reaching an ε-approximation for a particular set of partition functions takes a prohibitive amount of time and space. To alleviate some of this cost, we introduce two new algorithms into the osprey suite for protein design: fries, a Fast Removal of Inadequately Energied Sequences, and EWAK*, an Energy Window Approximation to K*. fries pre-processes the sequence space to limit a design to only the most stable, energetically favorable sequence possibilities. EWAK* then takes this pruned sequence space as input and, using a user-specified energy window, calculates K* scores using the lowest energy conformations. We expect fries/EWAK* to be most useful in cases where there are many unstable sequences in the design sequence space and when users are satisfied with enumerating the low-energy ensemble of conformations. In combination, these algorithms provably retain calculational accuracy while limiting the input sequence space and the conformations included in each partition function calculation to only the most energetically favorable, effectively reducing runtime while still enriching for desirable sequences. This combined approach led to significant speed-ups compared to the previous state-of-the-art multi-sequence algorithm, BBK*, while maintaining its efficiency and accuracy, which we show across 40 different protein systems and a total of 2,826 protein design problems. Additionally, as a proof of concept, we used these new algorithms to redesign the protein-protein interface (PPI) of the c-Raf-RBD:KRas complex. The Ras-binding domain of the protein kinase c-Raf (c-Raf-RBD) is the tightest known binder of KRas, a protein implicated in difficult-to-treat cancers. fries/EWAK* accurately retrospectively predicted the effect of 41 different sets of mutations in the PPI of the c-Raf-RBD:KRas complex. Notably, these mutations include mutations whose effect had previously been incorrectly predicted using other computational methods. Next, we used fries/EWAK* for prospective design and discovered a novel point mutation that improves binding of c-Raf-RBD to KRas in its active, GTP-bound state (KRasGTP). We combined this new mutation with two previously reported mutations (which were highly-ranked by osprey) to create a new variant of c-Raf-RBD, c-Raf-RBD(RKY). fries/EWAK* in osprey computationally predicted that this new variant binds even more tightly than the previous best-binding variant, c-Raf-RBD(RK). We measured the binding affinity of c-Raf-RBD(RKY) using a bio-layer interferometry (BLI) assay, and found that this new variant exhibits single-digit nanomolar affinity for KRasGTP, confirming the computational predictions made with fries/EWAK*. This new variant binds roughly five times more tightly than the previous best known binder and roughly 36 times more tightly than the design starting point (wild-type c-Raf-RBD). This study steps through the advancement and development of computational protein design by presenting theory, new algorithms, accurate retrospective designs, new prospective designs, and biochemical validation.


Asunto(s)
Biología Computacional , Ingeniería de Proteínas/métodos , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas p21(ras)/química , Algoritmos , Computadores , Humanos , Interferometría , Lectinas/química , Ligandos , Modelos Estadísticos , Lenguajes de Programación , Unión Proteica , Dominios Proteicos , Programas Informáticos
3.
ACS Infect Dis ; 5(11): 1896-1906, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31565920

RESUMEN

The spread of plasmid borne resistance enzymes in clinical Staphylococcus aureus isolates is rendering trimethoprim and iclaprim, both inhibitors of dihydrofolate reductase (DHFR), ineffective. Continued exploitation of these targets will require compounds that can broadly inhibit these resistance-conferring isoforms. Using a structure-based approach, we have developed a novel class of ionized nonclassical antifolates (INCAs) that capture the molecular interactions that have been exclusive to classical antifolates. These modifications allow for a greatly expanded spectrum of activity across these pathogenic DHFR isoforms, while maintaining the ability to penetrate the bacterial cell wall. Using biochemical, structural, and computational methods, we are able to optimize these inhibitors to the conserved active sites of the endogenous and trimethoprim resistant DHFR enzymes. Here, we report a series of INCA compounds that exhibit low nanomolar enzymatic activity and potent cellular activity with human selectivity against a panel of clinically relevant TMP resistant (TMPR) and methicillin resistant Staphylococcus aureus (MRSA) isolates.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Antagonistas del Ácido Fólico/química , Staphylococcus aureus Resistente a Meticilina/enzimología , Infecciones Estafilocócicas/microbiología , Tetrahidrofolato Deshidrogenasa/química , Trimetoprim/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Antagonistas del Ácido Fólico/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana , Tetrahidrofolato Deshidrogenasa/genética , Tetrahidrofolato Deshidrogenasa/metabolismo
4.
J Comput Biol ; 25(7): 726-739, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29641249

RESUMEN

Computational protein design (CPD) algorithms that compute binding affinity, Ka, search for sequences with an energetically favorable free energy of binding. Recent work shows that three principles improve the biological accuracy of CPD: ensemble-based design, continuous flexibility of backbone and side-chain conformations, and provable guarantees of accuracy with respect to the input. However, previous methods that use all three design principles are single-sequence (SS) algorithms, which are very costly: linear in the number of sequences and thus exponential in the number of simultaneously mutable residues. To address this computational challenge, we introduce BBK*, a new CPD algorithm whose key innovation is the multisequence (MS) bound: BBK* efficiently computes a single provable upper bound to approximate Ka for a combinatorial number of sequences, and avoids SS computation for all provably suboptimal sequences. Thus, to our knowledge, BBK* is the first provable, ensemble-based CPD algorithm to run in time sublinear in the number of sequences. Computational experiments on 204 protein design problems show that BBK* finds the tightest binding sequences while approximating Ka for up to 105-fold fewer sequences than the previous state-of-the-art algorithms, which require exhaustive enumeration of sequences. Furthermore, for 51 protein-ligand design problems, BBK* provably approximates Ka up to 1982-fold faster than the previous state-of-the-art iMinDEE/[Formula: see text]/[Formula: see text] algorithm. Therefore, BBK* not only accelerates protein designs that are possible with previous provable algorithms, but also efficiently performs designs that are too large for previous methods.


Asunto(s)
Biología Computacional/métodos , Conformación Proteica , Proteínas/química , Programas Informáticos , Algoritmos , Secuencia de Aminoácidos/genética , Entropía , Humanos , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...