Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G262-G280, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36749911

RESUMEN

Clostridioides difficile (C. difficile) toxins A (TcdA) and B (TcdB) cause antibiotic-associated colitis in part by disrupting epithelial barrier function. Accurate in vitro models are necessary to detect early toxicity kinetics, investigate disease etiology, and develop preclinical models for new therapies. Properties of cancer cell lines and organoids inherently limit these efforts. We developed adult stem cell-derived monolayers of differentiated human colonic epithelium (hCE) with barrier function, investigated the impact of toxins on apical/basal aspects of monolayers, and evaluated whether a leaky epithelial barrier enhances toxicity. Single-cell RNA-sequencing (scRNAseq) mapped C. difficile-relevant genes to human lineages. Transcriptomics compared hCE to Caco-2, informed timing of in vitro stem cell differentiation, and revealed transcriptional responses to TcdA. Transepithelial electrical resistance (TEER) and fluorescent permeability assays measured cytotoxicity. Contribution of TcdB toxicity was evaluated in a diclofenac-induced leaky gut model. scRNAseq demonstrated broad and variable toxin receptor expression. Absorptive colonocytes in vivo displayed increased toxin receptor, Rho GTPase, and cell junction gene expression. Advanced TcdA toxicity generally decreased cytokine/chemokine and increased tight junction and death receptor genes. Differentiated Caco-2 cells remained immature whereas hCE monolayers were similar to mature colonocytes in vivo. Basal exposure of TcdA/B caused greater toxicity and apoptosis than apical exposure. Apical exposure to toxins was enhanced by diclofenac. Apical/basal toxicities are uncoupled with more rapid onset and increased magnitude postbasal toxin exposure. Leaky junctions enhance toxicity of apical TcdB exposure. hCE monolayers represent a physiologically relevant and sensitive system to evaluate the impact of microbial toxins on gut epithelium.NEW & NOTEWORTHY Novel human colonocyte monolayer cultures, benchmarked by transcriptomics for physiological relevance, detect early cytopathic impacts of Clostridioides difficile toxins TcdA and TcdB. A fluorescent ZO-1 reporter in primary human colonocytes is used to track epithelial barrier disruption in response to TcdA. Basal TcdA/B exposure generally caused more rapid onset and cytotoxicity than apical exposure. Transcriptomics demonstrate changes in tight junction, chemokine, and cytokine receptor gene expression post-TcdA exposure. Diclofenac-induced leaky epithelium enhanced apical exposure toxicity.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Humanos , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Enterotoxinas/toxicidad , Enterotoxinas/metabolismo , Clostridioides difficile/metabolismo , Células CACO-2 , Diclofenaco , Proteínas Bacterianas/metabolismo , Colon/metabolismo
2.
Stem Cell Reports ; 17(6): 1493-1506, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35523179

RESUMEN

Two-dimensional (2D) cultures of intestinal and colonic epithelium can be generated using human intestinal stem cells (hISCs) derived from primary tissue sources. These 2D cultures are emerging as attractive and versatile alternatives to three-dimensional organoid cultures; however, transgenesis and gene-editing approaches have not been developed for hISCs grown as 2D monolayers. Using 2D cultured hISCs we show that electroporation achieves up to 80% transfection in hISCs from six anatomical regions with around 64% survival and produces 0.15% transgenesis by PiggyBac transposase and 35% gene edited indels by electroporation of Cas9-ribonucleoprotein complexes at the OLFM4 locus. We create OLFM4-emGFP knock-in hISCs, validate the reporter on engineered 2D crypt devices, and develop complete workflows for high-throughput cloning and expansion of transgenic lines in 3-4 weeks. New findings demonstrate small hISCs expressing the highest OLFM4 levels exhibit the most organoid forming potential and show utility of the 2D crypt device to evaluate hISC function.


Asunto(s)
Edición Génica , Marcación de Gen , Sistemas CRISPR-Cas , Edición Génica/métodos , Humanos , Intestino Delgado , Organoides , Células Madre , Transfección
3.
Cell Mol Gastroenterol Hepatol ; 13(5): 1554-1589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176508

RESUMEN

BACKGROUND & AIMS: Single-cell transcriptomics offer unprecedented resolution of tissue function at the cellular level, yet studies analyzing healthy adult human small intestine and colon are sparse. Here, we present single-cell transcriptomics covering the duodenum, jejunum, ileum, and ascending, transverse, and descending colon from 3 human beings. METHODS: A total of 12,590 single epithelial cells from 3 independently processed organ donors were evaluated for organ-specific lineage biomarkers, differentially regulated genes, receptors, and drug targets. Analyses focused on intrinsic cell properties and their capacity for response to extrinsic signals along the gut axis across different human beings. RESULTS: Cells were assigned to 25 epithelial lineage clusters. Multiple accepted intestinal stem cell markers do not specifically mark all human intestinal stem cells. Lysozyme expression is not unique to human Paneth cells, and Paneth cells lack expression of expected niche factors. Bestrophin 4 (BEST4)+ cells express Neuropeptide Y (NPY) and show maturational differences between the small intestine and colon. Tuft cells possess a broad ability to interact with the innate and adaptive immune systems through previously unreported receptors. Some classes of mucins, hormones, cell junctions, and nutrient absorption genes show unappreciated regional expression differences across lineages. The differential expression of receptors and drug targets across lineages show biological variation and the potential for variegated responses. CONCLUSIONS: Our study identifies novel lineage marker genes, covers regional differences, shows important differences between mouse and human gut epithelium, and reveals insight into how the epithelium responds to the environment and drugs. This comprehensive cell atlas of the healthy adult human intestinal epithelium resolves likely functional differences across anatomic regions along the gastrointestinal tract and advances our understanding of human intestinal physiology.


Asunto(s)
Mucosa Intestinal , Transcriptoma , Animales , Colon , Epitelio , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado , Ratones , Transcriptoma/genética
4.
Acta Biomater ; 53: 585-597, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28163237

RESUMEN

It is demonstrated that carboxylic acid-functionalized titanium dioxide (TiO2) NPs produce significantly higher levels of reactive oxygen species (ROS) after visible light irradiation (400-800nm, 1600mW/cm2) in comparison to nonfunctionalized TiO2 NPs. The level of ROS produced under these irradiation conditions was not capable of generating oxidatively induced DNA damage in a cell-free system for TiO2 concentrations of 0.5mg/L or 5mg/L. In addition, specific incorporation of the acrylic acid-functionalized TiO2 NPs into dental composites allowed us to utilize the generated ROS to enhance photopolymerization (curing and degree of vinyl conversion (DC)) of resin adhesives and create mechanically superior and biocompatible materials for dental applications. Incorporation of the TiO2 NPs into selected dental composites increased the mean DC values by ≈7%. The modified TiO2 materials and dental composite materials were extensively characterized using thermogravimetric analysis, electron microscopy, Fourier transform infrared spectroscopy, and electron paramagnetic resonance. Notably, dental adhesives incorporated with acrylic acid-functionalized TiO2 NPs produced stronger bonds to human teeth following visible light curing in comparison to traditional dental adhesives not containing NPs with an increase in the shear bond strength of ≈29%. In addition, no leaching of the incorporated NPs was detectable from the dental adhesives after 2500 thermal cycles using inductively coupled plasma-optical emission spectroscopy, indicating that biocompatibility of the adhesives was not compromised after extensive aging. These findings suggest that NP-induced ROS may be useful to produce enhanced nanocomposite materials for selected applications in the medical device field. STATEMENT OF SIGNIFICANCE: Titanium dioxide nanoparticles (TiO2 NPs) have unique photocatalytic, antibacterial and UV-absorbing properties that make them beneficial additives in adhesives and composites. However, there is concern that the reactive oxygen species (ROS) produced by photoactivated TiO2 NPs might pose toxicological risks. We demonstrate that it is possible to incorporate acid-functionalized TiO2 NPs into dental resins which can be applied as dental adhesives to human teeth. The ROS generated by these NPs through visible-light irradiation may be utilized to increase the degree of vinyl conversion of resins, leading to adhesives that have an enhanced shear-bond strength to human teeth. Investigation into the potential genotoxicity of the NPs and their potential for release from dental composites indicated a low risk of genotoxic effects.


Asunto(s)
Cementos Dentales/química , Curación por Luz de Adhesivos Dentales/métodos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Especies Reactivas de Oxígeno/síntesis química , Titanio/química , Diente/química , Adhesividad , Cementos Dentales/efectos de la radiación , Dureza , Luz , Ensayo de Materiales , Tamaño de la Partícula
5.
Proc Natl Acad Sci U S A ; 112(51): 15719-24, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26644576

RESUMEN

Pain management would be greatly enhanced by a formulation that would provide local anesthesia at the time desired by patients and with the desired intensity and duration. To this end, we have developed near-infrared (NIR) light-triggered liposomes to provide on-demand adjustable local anesthesia. The liposomes contained tetrodotoxin (TTX), which has ultrapotent local anesthetic properties. They were made photo-labile by encapsulation of a NIR-triggerable photosensitizer; irradiation at 730 nm led to peroxidation of liposomal lipids, allowing drug release. In vitro, 5.6% of TTX was released upon NIR irradiation, which could be repeated a second time. The formulations were not cytotoxic in cell culture. In vivo, injection of liposomes containing TTX and the photosensitizer caused an initial nerve block lasting 13.5 ± 3.1 h. Additional periods of nerve block could be induced by irradiation at 730 nm. The timing, intensity, and duration of nerve blockade could be controlled by adjusting the timing, irradiance, and duration of irradiation. Tissue reaction to this formulation and the associated irradiation was benign.


Asunto(s)
Anestesia Local/métodos , Bloqueo Nervioso/métodos , Nervio Ciático , Animales , Luz , Peroxidación de Lípido , Liposomas , Masculino , Ratas , Ratas Sprague-Dawley , Tetrodotoxina/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...