Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Total Environ ; 813: 152345, 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-34942250

RESUMEN

Despite the significant increase in the generation of SARS-CoV-2 contaminated domestic and hospital wastewater, little is known about the ecotoxicological effects of the virus or its structural components in freshwater vertebrates. In this context, this study evaluated the deleterious effects caused by SARS-CoV-2 Spike protein on the health of Danio rerio, zebrafish. We demonstrated, for the first time, that zebrafish injected with fragment 16 to 165 (rSpike), which corresponds to the N-terminal portion of the protein, presented mortalities and adverse effects on liver, kidney, ovary and brain tissues. The conserved genetic homology between zebrafish and humans might be one of the reasons for the intense toxic effects followed inflammatory reaction from the immune system of zebrafish to rSpike which provoked damage to organs in a similar pattern as happen in severe cases of COVID-19 in humans, and, resulted in 78,6% of survival rate in female adults during the first seven days. The application of spike protein in zebrafish was highly toxic that is suitable for future studies to gather valuable information about ecotoxicological impacts, as well as vaccine responses and therapeutic approaches in human medicine. Therefore, besides representing an important tool to assess the harmful effects of SARS-CoV-2 in the aquatic environment, we present the zebrafish as an animal model for translational COVID-19 research.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Femenino , Humanos , SARS-CoV-2 , Pez Cebra
3.
PLoS Pathog ; 15(9): e1007651, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513674

RESUMEN

Bacterial type IV secretion systems (T4SS) are a highly diversified but evolutionarily related family of macromolecule transporters that can secrete proteins and DNA into the extracellular medium or into target cells. It was recently shown that a subtype of T4SS harboured by the plant pathogen Xanthomonas citri transfers toxins into target cells. Here, we show that a similar T4SS from the multi-drug-resistant opportunistic pathogen Stenotrophomonas maltophilia is proficient in killing competitor bacterial species. T4SS-dependent duelling between S. maltophilia and X. citri was observed by time-lapse fluorescence microscopy. A bioinformatic search of the S. maltophilia K279a genome for proteins containing a C-terminal domain conserved in X. citri T4SS effectors (XVIPCD) identified twelve putative effectors and their cognate immunity proteins. We selected a putative S. maltophilia effector with unknown function (Smlt3024) for further characterization and confirmed that it is indeed secreted in a T4SS-dependent manner. Expression of Smlt3024 in the periplasm of E. coli or its contact-dependent delivery via T4SS into E. coli by X. citri resulted in reduced growth rates, which could be counteracted by expression of its cognate inhibitor Smlt3025 in the target cell. Furthermore, expression of the VirD4 coupling protein of X. citri can restore the function of S. maltophilia ΔvirD4, demonstrating that effectors from one species can be recognized for transfer by T4SSs from another species. Interestingly, Smlt3024 is homologous to the N-terminal domain of large Ca2+-binding RTX proteins and the crystal structure of Smlt3025 revealed a topology similar to the iron-regulated protein FrpD from Neisseria meningitidis which has been shown to interact with the RTX protein FrpC. This work expands our current knowledge about the function of bacteria-killing T4SSs and increases the panel of effectors known to be involved in T4SS-mediated interbacterial competition, which possibly contribute to the establishment of S. maltophilia in clinical and environmental settings.


Asunto(s)
Proteínas Bacterianas/fisiología , Stenotrophomonas maltophilia/fisiología , Stenotrophomonas maltophilia/patogenicidad , Sistemas de Secreción Tipo IV/fisiología , Secuencia de Aminoácidos , Antibiosis/genética , Antibiosis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia Conservada , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Genes Bacterianos , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/genética , Proteínas Reguladoras del Hierro/fisiología , Modelos Moleculares , Infecciones Oportunistas/microbiología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad de la Especie , Stenotrophomonas maltophilia/genética , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/genética , Xanthomonas/genética , Xanthomonas/crecimiento & desarrollo
4.
São Paulo; s.n; s.n; 2017. 194p ilus, tab, graf.
Tesis en Portugués | LILACS | ID: biblio-876644

RESUMEN

Sistemas de Secreção Tipo IV (T4SSs), normalmente compostos por 12 proteínas (VirB1-VirB11 e VirD4) são tipicamente associados às funções de conjugação bacteriana e transferência de fatores de patogenicidade para células hospedeiras. Mas também, muitas espécies da ordem Xanthomonadales possuem um T4SS associado a matar bactérias. O modelo atual de morte de uma célula-alvo mediada pelo T4SS é baseado na secreção de toxinas denominadas XVIPs ("Xanthomonas VirD4 interacting proteins") ou X-Tfe (Xanthomonadaceae-T4SS effector) no qual cada XVIP/X-Tfe apresenta uma proteína de imunidade cognata denominada X-Tfi (Xanthomonadaceae-T4SS immunity protein). Demonstramos que um XVIP, XAC2609, é secretado através do T4SS de modo que depende de contato célula-célula e do seu domínio XVIPCD ("XVIP conserved domains"). A porção N-terminal de XAC2609 codifica um domínio GH19 que cliva a peptideoglicana de E. coli, mas perde a sua atividade na presença do seu inibidor cognato, o X-Tfi XAC2610. Portanto, XAC2609/XAC2610 formam um par de proteínas efetora/imunidade associado ao T4SS de X. citri. Através de diferentes técnicas de microscopias utilizando a cepa Δxac2610, foi observado que XAC2610 protege o envelope celular de X. citri contra efeitos de autólise celular promovidos pela atividade de XAC2609. Ensaios funcionais baseados nas observações de fenótipos de colônias e de formação de biofilme mostraram que XAC2610 confere imunidade para X. citri contra uma atividade 7 intrínseca de XAC2609. A proteína com o papel de reconhecer os substratos através da interação com os sinais de secreção do T4SS é VirD4. No T4SS de X. citri, existe a hipótese de que o domínio XVIPCD seja o sinal de secreção presente nas XVIPs. Logo, os aspectos bioquímicos e biofísicos da interação VirD4-XVIPCD foram investigados através de experimentos de co-purificação por cromatografia de afinidade e exclusão molecular, RMN e SAXS. Demonstramos que o domínio AAD de VirD4 (VirD4AAD) está associado a interagir especificamente com o domínio XVIPCD de XAC2609 (XAC2609XVIPCD), formando um heterodímero em solução. VirD4AAD é um domínio globular e monomérico e XAC2609XVIPCD é desenovelado mas se enovela concomitante à interação com VirD4AAD. Construções de XAC2609 contendo mutações pontuais no domínio XVIPCD foram utilizadas em ensaios in vivo de secreção pela X. citri e ensaios in vitro de interação com VirD4AAD por titulação monitorada por calorimetria isotérmica (ITC). Através desses experimentos, observamos que uma forte interação entre VirD4AAD-XAC2609XVIPCD é essencial para secreção de XAC2609 via o T4SS. Esses resultados permitem concluir que o domínio XVIPCD é o sinal de secreção dos substratos do T4SS de X. citri e que o AAD confere especificidade à VirD4 por interagir com o XVIPCD. Finalmente, através de ensaios de competições bacterianas entre E. coli e X. citri, foram observados diferentes fenótipos associados à função do T4SS: i) nocautes gênicos das subunidades estruturais VirB5, VirB11 abolem a função do T4SS em X. citri.; ii) nocautes de xac2611, apresentaram uma maior vantagem adaptativa do que a cepa selvagem de X. citri em competições e a expressão epissomal de XAC2611 inibe fortemente a função do T4SS e iii) a atividade ATPásica de VirD4 é essencial para a função do sistema e a expressão de mutantes 8 de VirD4 exerce um fenótipo de dominância negativa sobre a função do T4SS em X. citri


The Type IV secretion System (T4SS) is typically associated with the function of bacterial conjugation and as a pathogenicity factor. T4SSs are normally composed of 12 proteins, VirB1-VirB11 and VirD4. Many species of the order Xanthomonadales possess a T4SS associated with killing bacteria. The current model of the T4SS killing is based on the secretion of toxins denominated XVIPs/X-Tfes (Xanthomonas VirD4 interacting proteins) /(Xanthomonadaceae-T4SS effector) in which each XVIP/X-Tfe has a cognate immunity protein denominated X-Tfi (Xanthomonadaceae-T4SS immunity protein). We demonstrate that an XVIP, XAC2609, is secreted through the T4SS so that it depends on cell-cell contact and its XVIPCD domain ("XVIP conserved domains"). The N-terminal portion of XAC2609 encodes a GH19 domain which cleaves the E. coli peptidoglycan but loses its activity in the presence of its cognate inhibitor, X-Tfi XAC2610. Therefore, XAC2609 /XAC2610 form a pair of effector/immunity proteins associated with X. citri T4SS. By using the X. citri Δxac2610 strain, has been shown through different microscopic techniques that XAC2610 protects the cell envelope of X. citri against the effects of cellular autolysis promoted by XAC2609 activity. Functional assays based on observations of colony phenotypes and biofilm formation has shown that XAC2610 confers immunity to X. citri against an intrinsic activity of XAC2609. VirD4 is the protein that recognizes the substrates through the interaction with the T4SS secretion signals. In the T4SS of X. citri, is hypothesized that the XVIPCD domain is the secretion signal present in the XVIPs. Here, the biochemical and biophysical aspects of the VirD4-XVIPCD interaction were investigated through Pull- Down, Molecular Exclusion Chromatography, NMR and SAXS assays. It has been shown the AAD domain of VirD4 (VirD4AAD) is associated with specifically interacting with the XAC2609XVIPCD domain (XAC2609XVIPCD), forming a heterodimer in solution. VirD4AAD is a globular and monomeric domain while XAC2609XVIPCD is elongated, but upon interaction with VirD4AAD goes through structural compaction process. Constructs of XAC2609 containing point mutations in the XVIPCD domain were used to perform secretion experiments in X. citri and Isothermal titration calorimetry against VirD4AAD. Through these assays, it has been characterized that a strong interaction between VirD4AAD-XAC2609XVIPCD is essential for secretion of XAC2609 via T4SS. Consequently, these results allow concluding that the XVIPCD domain is the secretion signal of X. citri T4SS substrate and the AAD confer specificity to VirD4 by interact with the XVIPCD domains. Finally, bacterial competitions between E. coli and X. citri showed different phenotypes associated with T4SS function: i) virB5, virB11 knockouts abolish the function of T4SS in X. citri.; ii) knockouts of xac2611 exhibited a higher adaptive efficiency than the wild-type X. citri strain in competitions, but the expression of XAC2611 abolishes the function of T4SS in the wild strain of X. citri; iii) The ATPase activity of VirD4 is essential and exerts a negative dominance over the T4SS function in X.citri


Asunto(s)
Xanthomonas/clasificación , Sistemas de Secreción Tipo IV/análisis , Cromatografía de Afinidad/instrumentación , Análisis de Secuencia/métodos , Microscopía/métodos
5.
Structure ; 24(10): 1707-1718, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27594685

RESUMEN

The type IV secretion system (T4SS) from the phytopathogen Xanthomonas citri (Xac) is a bactericidal nanomachine. The T4SS core complex is a ring composed of multiple copies of VirB7-VirB9-VirB10 subunits. Xac-VirB7 contains a disordered N-terminal tail (VirB7NT) that recognizes VirB9, and a C-terminal domain (VirB7CT) involved in VirB7 self-association. Here, we show that VirB7NT forms a short ß strand upon binding to VirB9 and stabilizes it. A tight interaction between them is essential for T4SS assembly and antibacterial activity. Abolishing VirB7 self-association or deletion of the VirB7 C-terminal domain impairs this antibacterial activity without disturbing T4SS assembly. These findings reveal protein interactions within the core complex that are critical for the stability and activity of a T4SS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/metabolismo , Xanthomonas/metabolismo , Antibacterianos/química , Antibacterianos/metabolismo , Modelos Moleculares , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Sistemas de Secreción Tipo IV/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...