Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6466, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753925

RESUMEN

Lysine acetylation regulates the function of soluble proteins in vivo, yet it remains largely unexplored whether lysine acetylation regulates membrane protein function. Here, we use bioinformatics, biophysical analysis of recombinant proteins, live-cell fluorescent imaging and genetic manipulation of Drosophila to explore lysine acetylation in peripheral membrane proteins. Analysis of 50 peripheral membrane proteins harboring BAR, PX, C2, or EHD membrane-binding domains reveals that lysine acetylation predominates in membrane-interaction regions. Acetylation and acetylation-mimicking mutations in three test proteins, amphiphysin, EHD2, and synaptotagmin1, strongly reduce membrane binding affinity, attenuate membrane remodeling in vitro and alter subcellular localization. This effect is likely due to the loss of positive charge, which weakens interactions with negatively charged membranes. In Drosophila, acetylation-mimicking mutations of amphiphysin cause severe disruption of T-tubule organization and yield a flightless phenotype. Our data provide mechanistic insights into how lysine acetylation regulates membrane protein function, potentially impacting a plethora of membrane-related processes.


Asunto(s)
Lisina/metabolismo , Acetilación , Animales , Drosophila , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
2.
Nat Commun ; 12(1): 4272, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257293

RESUMEN

The first exon of the huntingtin protein (HTTex1) important in Huntington's disease (HD) can form cross-ß fibrils of varying toxicity. We find that the difference between these fibrils is the degree of entanglement and dynamics of the C-terminal proline-rich domain (PRD) in a mechanism analogous to polyproline film formation. In contrast to fibril strains found for other cross-ß fibrils, these HTTex1 fibril types can be interconverted. This is because the structure of their polyQ fibril core remains unchanged. Further, we find that more toxic fibrils of low entanglement have higher affinities for protein interactors and are more effective seeds for recombinant HTTex1 and HTTex1 in cells. Together these data show how the structure of a framing sequence at the surface of a fibril can modulate seeding, protein-protein interactions, and thereby toxicity in neurodegenerative disease.


Asunto(s)
Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Humanos , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Enfermedades Neurodegenerativas/genética , Péptidos/química , Péptidos/metabolismo , Mapas de Interacción de Proteínas
3.
J Am Chem Soc ; 141(36): 14168-14179, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31456396

RESUMEN

Mitochondrially derived peptides (MDPs) such as humanin (HN) have shown a remarkable ability to modulate neurological amyloids and apoptosis-associated proteins in cells and animal models. Recently, we found that humanin-like peptides also inhibit amyloid formation outside of neural environments in islet amyloid polypeptide (IAPP) fibrils and plaques, which are hallmarks of Type II diabetes. However, the biochemical basis for regulating amyloids through endogenous MDPs remains elusive. One hypothesis is that MDPs stabilize intermediate amyloid oligomers and discourage the formation of insoluble fibrils. To test this hypothesis, we carried out simulations and experiments to extract the dominant interactions between the S14G-HN mutant (HNG) and a diverse set of IAPP structures. Replica-exchange molecular dynamics suggests that MDPs cap the growth of amyloid oligomers. Simulations also indicate that HNG-IAPP heterodimers are 10 times more stable than IAPP homodimers, which explains the substoichiometric ability of HNG to inhibit amyloid growth. Despite this strong attraction, HNG does not denature IAPP. Instead, HNG binds IAPP near the disordered NFGAIL motif, wedging itself between amyloidogenic fragments. Shielding of NFGAIL-flanking fragments reduces the formation of parallel IAPP ß-sheets and subsequent nucleation of mature amyloid fibrils. From ThT spectroscopy and electron microscopy, we found that HNG does not deconstruct mature IAPP fibrils and oligomers, consistent with the simulations and our proposed hypothesis. Taken together, this work provides new mechanistic insight into how endogenous MDPs regulate pathological amyloid growth at the molecular level and in highly substoichiometric quantities, which can be exploited through peptidomimetics in diabetes or Alzheimer's disease.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Mitocondrias/química , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Polipéptido Amiloide de los Islotes Pancreáticos/química , Mitocondrias/metabolismo , Simulación de Dinámica Molecular
4.
Sci Rep ; 7(1): 7802, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798389

RESUMEN

Mitochondrial-derived peptides (MDPs) and their analogs have emerged as wide-spectrum, stress response factors protective in amyloid disease models. MDP cytoprotective functions are generally attributed to anti-apoptotic activity, however, little is known about their capacity to facilitate the cell's unfolded protein response via direct interactions with amyloidogenic proteins. Here, we explored the effects of the MDP-analog, humaninS14G (HNG), and the MDP, small humanin-like peptide 2 (SHLP2), on the misfolding of islet amyloid polypeptide (IAPP), a critical pathogenic step in type 2 diabetes mellitus (T2DM). Our thioflavin T fluorescence studies show that HNG inhibits IAPP misfolding at highly substoichiometric concentrations. Seeded fluorescence and co-sedimentation studies demonstrate MDPs block amyloid seeding and directly bind misfolded, seeding-capable IAPP species. Furthermore, our electron paramagnetic resonance spectroscopy and circular dichroism data indicate MDPs do not act by binding IAPP monomers. Taken together our results reveal a novel chaperone-like activity wherein these MDPs specifically target misfolded amyloid seeds to inhibit IAPP misfolding which, along with direct anti-apoptotic activity and beneficial metabolic effects, make HNG and SHLP2 exciting prospects as T2DM therapeutics. These data also suggest that other mitochondrial stress response factors within the MDP family may be amenable to development into therapeutics for protein-misfolding diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/farmacología , Polipéptido Amiloide de los Islotes Pancreáticos/química , Mitocondrias/química , Dicroismo Circular , Diabetes Mellitus Tipo 2/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Microscopía Electrónica de Transmisión , Unión Proteica , Pliegue de Proteína/efectos de los fármacos
5.
Sci Rep ; 6: 31094, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27531121

RESUMEN

The current diabetes epidemic is associated with a diverse set of risk factors including obesity and exposure to plastics. Notably, significant elevations of negatively charged amphiphilic molecules are observed in obesity (e.g. free fatty acids and phosphatidic acid) and plastics exposure (monophthalate esters). It remains unclear whether these factors share pathogenic mechanisms and whether links exist with islet amyloid polypeptide (IAPP) misfolding, a process central to ß-cell dysfunction and death. Using a combination of fluorescence, circular dichroism and electron microscopy, we show that phosphatidic acid, oleic acid, and the phthalate metabolite MBzP partition into neutral membranes and enhance IAPP misfolding. The elevation of negative charge density caused by the presence of the risk factor molecules stabilizes a common membrane-bound α-helical intermediate that, in turn, facilitates IAPP misfolding. This shared mechanism points to a critical role for the membrane-bound intermediate in disease pathogenesis, making it a potential target for therapeutic intervention.


Asunto(s)
Diabetes Mellitus Tipo 2/fisiopatología , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Membranas/metabolismo , Obesidad/complicaciones , Pliegue de Proteína , Dicroismo Circular , Humanos , Membranas/química , Microscopía Electrónica , Ácido Oléico/metabolismo , Imagen Óptica , Ácidos Fosfatidicos/metabolismo , Ácidos Ftálicos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...