Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 55(2): 370-80, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24406632

RESUMEN

To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].


Asunto(s)
Dióxido de Carbono/farmacología , Nitrógeno/metabolismo , Oryza/fisiología , Fotosíntesis , Transpiración de Plantas , Ribulosa-Bifosfato Carboxilasa/metabolismo , Biomasa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Productos Agrícolas , Grano Comestible/crecimiento & desarrollo , Grano Comestible/fisiología , Grano Comestible/efectos de la radiación , Japón , Luz , Nitrógeno/análisis , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Oryza/efectos de la radiación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Estomas de Plantas/crecimiento & desarrollo , Estomas de Plantas/fisiología , Estomas de Plantas/efectos de la radiación , Ribulosafosfatos/metabolismo , Estaciones del Año , Suelo , Temperatura , Agua/fisiología
2.
Glob Chang Biol ; 19(8): 2444-53, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23564676

RESUMEN

An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.


Asunto(s)
Dióxido de Carbono/metabolismo , Oryza/fisiología , Transpiración de Plantas , Agua/metabolismo , Cambio Climático , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Temperatura
3.
Funct Plant Biol ; 40(2): 148-159, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32481095

RESUMEN

There is some evidence that rice cultivars respond differently to elevated CO2 concentrations ([CO2]), but [CO2]×cultivar interaction has never been tested under open-field conditions across different sites. Here, we report on trials conducted at free-air CO2 enrichment (FACE) facilities at two sites in Japan, Shizukuishi (2007 and 2008) and Tsukuba (2010). The average growing-season air temperature was more than 5°C warmer at Tsukuba than at Shizukuishi. For four cultivars tested at both sites, the [CO2]×cultivar interaction was significant for brown rice yield, but there was no significant interaction with site-year. Higher-yielding cultivars with a large sink size showed a greater [CO2] response. The Tsukuba FACE experiment, which included eight cultivars, revealed a wider range of yield enhancement (3-36%) than the multi-site experiment. All of the tested yield components contributed to this enhancement, but there was a highly significant [CO2]×cultivar interaction for percentage of ripened spikelets. These results suggest that a large sink is a prerequisite for higher productivity under elevated [CO2], but that improving carbon allocation by increasing grain setting may also be a practical way of increasing the yield response to elevated [CO2].

4.
Environ Microbiol Rep ; 4(6): 648-54, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23760936

RESUMEN

Rice paddies are one of the most important sources of CH4 emission from the terrestrial ecosystem. A Free-air CO2 Enrichment (FACE) experiment, which included a soil warming treatment, was conducted in a rice paddy at Shizukuishi, Japan. In this study, the changes in CH4 emission from a rice paddy, caused by global climate change, were explored in relation to the structural changes that have occurred in the methanogenic archaeal communities found in the soil and roots. The composition of the archaeal community was examined by terminal restriction fragment length polymorphism (T-RFLP) using the 16S rRNA gene, while its abundance was measured by real-time PCR using the methyl coenzyme M reductase (mcrA) gene. The archaeal community in the roots showed considerable change, characterized by the dominance of hydrogenotrophic methanogens and a corresponding decrease in acetoclastic methanogens. Seasonal changes in CH4 flux were closely related to the changes in methanogen abundance in the roots. Elevated CO2 caused an increase in root mass, which increased the abundance of methanogens leading to a rise in CH4 emissions. However, soil warming stimulated CH4 emissions by increasing CH4 production per individual methanogen. These results demonstrated that climate warming stimulates CH4 emission in a rice paddy by altering the abundance and activity of methanogenic archaea in the roots.

5.
Plant Cell Environ ; 33(3): 322-31, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19895405

RESUMEN

Understanding of leaf stomatal responses to the atmospheric CO(2) concentration, [CO(2)], is essential for accurate prediction of plant water use under future climates. However, limited information is available for the diurnal and seasonal changes in stomatal conductance (g(s)) under elevated [CO(2)]. We examined the factors responsible for variations in g(s) under elevated [CO(2)] with three rice cultivars grown in an open-field environment under flooded conditions during two growing seasons (a total of 2140 individual measurements). Conductance of all cultivars was generally higher in the morning and around noon than in the afternoon, and elevated [CO(2)] decreased g(s) by up to 64% over the 2 years (significantly on 26 out of 38 measurement days), with a mean g(s) decrease of 23%. We plotted the g(s) variations against three parameters from the Ball-Berry model and two revised versions of the model, and all parameters explained the g(s) variations well at each [CO(2)] in the morning and around noon (R(2) > 0.68), but could not explain these variations in the afternoon (R(2) < 0.33). The present results provide an important basis for modelling future water use in rice production.


Asunto(s)
Dióxido de Carbono/fisiología , Ritmo Circadiano , Oryza/fisiología , Estomas de Plantas/fisiología , Estaciones del Año , Modelos Biológicos , Fotosíntesis , Transpiración de Plantas , Temperatura , Agua/fisiología
6.
J Exp Bot ; 60(2): 523-32, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19050063

RESUMEN

Maturity group (based on the number of days to maturity) is an important growth trait for determining crop productivity, but there has been no attempt to examine the effects of elevated [CO(2)] on yield enhancement of rice cultivars with different maturity groups. Since early-maturing cultivars generally show higher plant N concentration than late-maturing cultivars, it is hypothesized that [CO(2)]-induced yield enhancement might be larger for early-maturing cultivars than late-maturing cultivars. To test this hypothesis, the effects of elevated [CO(2)] on yield components, biomass, N uptake, and leaf photosynthesis of cultivars with different maturity groups were examined for 2 years using a free-air CO(2) enrichment (FACE). Elevated [CO(2)] significantly increased grain yield and the magnitude significantly differed among the cultivars as detected by a significant [CO(2)] x cultivar interaction. Two cultivars (one with early and one with late maturity) responded more strongly to elevated [CO(2)] than those with intermediate maturity, resulting mainly from increases in spikelet density. Biomass and N uptake at the heading stage were closely correlated with grain yield and spikelet density over [CO(2)] and cultivars. Our 2 year field trial rejected the hypothesis that earlier cultivars would respond more to elevated [CO(2)] than later cultivars, but it is revealed that the magnitude of the growth enhancement before heading is a useful criterion for selecting rice cultivars capable of adapting to elevated [CO(2)].


Asunto(s)
Biomasa , Dióxido de Carbono/farmacología , Variación Genética , Oryza/crecimiento & desarrollo , Oryza/genética , Aire , Genotipo , Luz , Nitrógeno/metabolismo , Oryza/efectos de los fármacos , Oryza/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Estaciones del Año , Suelo , Temperatura
7.
Plant Cell Physiol ; 49(9): 1294-305, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18676378

RESUMEN

The role of root temperature T(R) in regulating the water-uptake capability of rice roots and the possible relationship with aquaporins were investigated. The root hydraulic conductivity Lp(r) decreased with decreasing T(R) in a measured temperature range between 10 degrees C and 35 degrees C. A single break point (T(RC) = 15 degrees C) was detected in the Arrhenius plot for steady-state Lp(r). The temperature dependency of Lp(r) represented by activation energy was low (28 kJ mol(-1)) above T(RC), but the value is slightly higher than that for the water viscosity. Addition of an aquaporin inhibitor, HgCl(2), into root medium reduced osmotic exudation by 97% at 25 degrees C, signifying that aquaporins play a major role in regulating water uptake. Below T(RC), Lp(r) declined precipitously with decreasing T(R) (E(a) = 204 kJ mol(-1)). When T(R) is higher than T(RC), the transient time for reaching the steady-state of Lp(r) after the immediate change in T(R) (from 25 degrees C) was estimated as 10 min, while it was prolonged up to 2-3 h when T(R) < T(RC). The Lp(r) was completely recovered to the initial levels when T(R) was returned back to 25 degrees C. Immunoblot analysis using specific antibodies for the major aquaporin members of PIPs and TIPs in rice roots revealed that there were no significant changes in the abundance of aquaporins during 5 h of low temperature treatment. Considering this result and the significant inhibition of water-uptake by the aquaporin inhibitor, we hypothesize that the decrease in Lp(r) when T(R) < T(RC) was regulated by the activity of aquaporins rather than their abundance.


Asunto(s)
Acuaporinas/metabolismo , Oryza/fisiología , Raíces de Plantas/fisiología , Agua/metabolismo , Frío , Cinética , Modelos Biológicos , Oryza/metabolismo , Presión Osmótica , Raíces de Plantas/metabolismo , Xilema/metabolismo , Xilema/fisiología
8.
Plant Cell Physiol ; 49(3): 433-42, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18252732

RESUMEN

Root temperature is found to be a very important factor for leaves to alter the response and susceptibility to chilling stress. Severe visible damage was observed in the most active leaves of seedlings of a japonica rice (Oryza sativa cv. Akitakomachi), e.g. the third leaf at the third-leaf stage, after the treatment where only leaves but not roots were chilled (L/H). On the other hand, no visible damage was observed after the treatment where both leaves and roots were chilled simultaneously (L/L). The chilling injury induced by L/H, a novel type of chilling injury, required the light either during or after the chilling in order to develop the visible symptoms such as leaf bleaching and tissue necrosis. Chlorophyll fluorescence parameters measured after various lengths of chilling treatments showed that significant changes were induced before the visible injury. The effective quantum yield and photochemical quenching of PSII dropped dramatically within 24 h in both the presence and absence of a 12 h light period. The maximal quantum yield and non-photochemical quenching of PSII decreased significantly only in the presence of light. On the other hand, L/H chilling did not affect the function of PSI, but caused a significant decrease in the electron availability for PSI. These results suggest that the leaf chilling with high root temperature destroys some component between PSII and PSI without the aid of light, which causes the over-reduction of PSII in the light, and thereby the visible injury is induced only in the light.


Asunto(s)
Frío , Calor , Oryza/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Plantones/metabolismo , Clorofila/metabolismo , Fotoperiodo , Agua
9.
Ann Bot ; 97(4): 549-57, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16399793

RESUMEN

BACKGROUND AND AIMS: Influences of rising global CO(2) concentration and temperature on plant growth and ecosystem function have become major concerns, but how photosynthesis changes with CO(2) and temperature in the field is poorly understood. Therefore, studies were made of the effect of elevated CO(2) on temperature dependence of photosynthetic rates in rice (Oryza sativa) grown in a paddy field, in relation to seasons in two years. METHODS: Photosynthetic rates were determined monthly for rice grown under free-air CO(2) enrichment (FACE) compared to the normal atmosphere (570 vs 370 micromol mol(-1)). Temperature dependence of the maximum rate of RuBP (ribulose-1,5-bisphosphate) carboxylation (V(cmax)) and the maximum rate of electron transport (J(max)) were analysed with the Arrhenius equation. The photosynthesis-temperature response was reconstructed to determine the optimal temperature (T(opt)) that maximizes the photosynthetic rate. KEY RESULTS AND CONCLUSIONS: There was both an increase in the absolute value of the light-saturated photosynthetic rate at growth CO(2) (P(growth)) and an increase in T(opt) for P(growth) caused by elevated CO(2) in FACE conditions. Seasonal decrease in P(growth) was associated with a decrease in nitrogen content per unit leaf area (N(area)) and thus in the maximum rate of electron transport (J(max)) and the maximum rate of RuBP carboxylation (V(cmax)). At ambient CO(2), T(opt) increased with increasing growth temperature due mainly to increasing activation energy of V(cmax). At elevated CO(2), T(opt) did not show a clear seasonal trend. Temperature dependence of photosynthesis was changed by seasonal climate and plant nitrogen status, which differed between ambient and elevated CO(2).


Asunto(s)
Dióxido de Carbono/fisiología , Oryza/fisiología , Fotosíntesis , Estaciones del Año , Temperatura , Modelos Biológicos , Oryza/crecimiento & desarrollo
10.
Plant Cell Physiol ; 46(10): 1704-12, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16120688

RESUMEN

An increase in atmospheric CO(2) concentration ( [CO(2)]) is generally expected to enhance photosynthesis and biomass. Rice plants (Oryza sativa L.) were grown in ambient CO(2) (AMB) or free-air CO(2)-enrichment (FACE), in which the target [CO(2)] was 200 micromol mol(-1) above AMB. (13)CO(2) was fed to the plants at different stages so we could examine the partitioning of photosynthates. Furthermore, canopy photosynthesis and respiration were measured at those stages. The ratio of (13)C content in the whole plant to the amount of fixed (13)C under FACE was similar to that under AMB at the vegetative stage. However, the ratio under FACE was greater than the ratio under AMB at the grain-filling stage. At the vegetative stage, plants grown under FACE had a larger biomass than those grown under AMB owing to enhancement of canopy photosynthesis by the increased [CO(2)]. On the other hand, at the grain-filling stage, CO(2) enrichment promoted the partitioning of photosynthate to ears, and plants grown under FACE had a greater weight of ears. However, enhancement of ear weight by CO(2) enrichment was not as great as that of biomass at the vegetative stage. Plants grown under FACE did not necessarily show higher canopy photosynthetic rates at the grain-filling stage. Therefore, we concluded that the ear weight did not increase as much as biomass at the vegetative stage owing to a loss of the advantage in CO(2) gain during the grain-filling period.


Asunto(s)
Dióxido de Carbono , Oryza/fisiología , Fotosíntesis , Estaciones del Año , Aire , Oryza/crecimiento & desarrollo
11.
Funct Plant Biol ; 29(8): 947-955, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32689545

RESUMEN

Relationships between photosynthetic acclimation and changes in the balance between source-sink supply and demand of carbon (C) and nitrogen (N) were tested using rice (Oryza sativa L. cv. Akitakomachi). Plants were field-grown in northern Japan at ambient CO2 partial pressure [p(CO2)] or free air CO2 enrichment (FACE; p(CO2) ~ 26-32 Pa above ambient) with low, medium or high N supplies. Leaf CO2 assimilation rates (A) and biochemical parameters were measured at 32-36 (eighth leaf) and 76-80 (flag leaf) d after transplanting, representing stages with a contrasting balance between C and N supply and demand in sources and sinks. Acclimation due to FACE was pronounced in flag leaves at each N supply. This was not fully accounted for by reductions in leaf N concentrations, because A/N and Vcmax/N were lower in FACE-grown flag leaves. Acclimation did not occur in the eighth leaf, and A/N and Vcmax/N was not significantly increased in FACE-grown leaves. Soluble protein / sucrose and amino acid / sucrose concentrations decreased under FACE, whereas sucrose phosphate synthase protein levels increased. At flag leaf stage, there was a discrepancy between the demand and supply of N, which was resolved by enhanced leaf N remobilization, associated with the lower Rubisco concentrations under FACE. In contrast to the early growth stage, enhanced growth of rice plants was accompanied by increased plant N uptake in FACE. We conclude that photosynthetic acclimation in flag leaves occurs under FACE because there is a large demand for N for reproductive development, relative to supply of N from root uptake and remobilization from leaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...