Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(8): e3002731, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102375

RESUMEN

Bacterial pathogens utilize the factors of their hosts to infect them, but which factors they exploit remain poorly defined. Here, we show that a pathogenic Salmonella enterica serovar Typhimurium (STm) exploits host polyamines for the functional expression of virulence factors. An STm mutant strain lacking principal genes required for polyamine synthesis and transport exhibited impaired infectivity in mice. A polyamine uptake-impaired strain of STm was unable to inject effectors of the type 3 secretion system into host cells due to a failure of needle assembly. STm infection stimulated host polyamine production by increasing arginase expression. The decline in polyamine levels caused by difluoromethylornithine, which inhibits host polyamine production, attenuated STm colonization, whereas polyamine supplementation augmented STm pathogenesis. Our work reveals that host polyamines are a key factor promoting STm infection, and therefore a promising therapeutic target for bacterial infection.


Asunto(s)
Poliaminas , Salmonella typhimurium , Sistemas de Secreción Tipo III , Factores de Virulencia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Salmonella typhimurium/genética , Animales , Poliaminas/metabolismo , Ratones , Sistemas de Secreción Tipo III/metabolismo , Sistemas de Secreción Tipo III/genética , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Interacciones Huésped-Patógeno , Humanos , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Femenino
2.
Mod Rheumatol Case Rep ; 8(2): 386-390, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38771101

RESUMEN

Osteogenesis imperfecta (OI) is a heterogeneous disorder characterised by bone fragility. Herein, we report a case of OI diagnosed after subchondral insufficiency fracture (SIF) of bilateral femoral heads. A 37-year-old woman was referred to Saitama Medical University Hospital due to left hip pain without any trauma that lasted for 2 months. She was subsequently diagnosed with SIF of the left femoral head. After 3 months, she further developed SIF of the right hip without any trauma. Magnetic resonance imaging of the bilateral hips showed linear low-signal changes of the subchondral bone and bone marrow oedema of the femoral head on T2-weighted coronal and sagittal images, diagnosing of both SIFs. The bone mineral density was 0.851 g/cm2 (T-score, -1.3) at the lumbar spine, 0.578 g/cm2 (T-score, -1.9) at the right femoral neck, and 0.582 g/cm2 (T-score, -1.9) at the left femoral neck. Considering that the patient had multiple histories of fracture, blue sclera, and mild bilateral sensorineural hearing loss, she satisfied the diagnostic criteria for OI. Genetic testing revealed a mutation in COL1A1 (NM_000088.3, c.3806G>A: p. Trp1269*). After 7 months of conservative therapy, her symptoms improved. After 4 years, both hips were pain-free with no evidence of osteoarthritis progression. OI can result in insufficiency fractures due to bone fragility in adolescence and adulthood or later, and none of the cases of OI, except for the current case, were diagnosed as a result of bilateral SIF.


Asunto(s)
Fracturas por Estrés , Osteogénesis Imperfecta , Humanos , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/diagnóstico , Femenino , Adulto , Fracturas por Estrés/diagnóstico , Fracturas por Estrés/etiología , Imagen por Resonancia Magnética , Cabeza Femoral/patología , Cabeza Femoral/lesiones , Densidad Ósea , Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I , Mutación
3.
Infect Immun ; 92(6): e0013224, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38700334

RESUMEN

Adherent and invasive Escherichia coli (AIEC) is a pathobiont that is involved in the onset and exacerbation of Crohn's disease. Although the inducible expression of virulence traits is a critical step for AIEC colonization in the host, the mechanism underlying AIEC colonization remains largely unclear. We here showed that the two-component signal transduction system CpxRA contributes to AIEC gut competitive colonization by activating type 1 fimbriae expression. CpxRA from AIEC strain LF82 functioned as a transcriptional regulator, as evidenced by our finding that an isogenic cpxRA mutant exhibits reduced expression of cpxP, a known regulon gene. Transcription levels of cpxP in LF82 increased in response to envelope stress, such as exposure to antimicrobials compromising the bacterial membrane, whereas the cpxRA mutant did not exhibit this response. Furthermore, we found that the cpxRA mutant exhibits less invasiveness into host cells than LF82, primarily due to reduced expression of the type 1 fimbriae. Finally, we found that the cpxRA mutant is impaired in gut competitive colonization in a mouse model. The colonization defects were reversed by the introduction of a plasmid encoding the cpxRA gene or expressing the type 1 fimbriae. Our findings indicate that modulating CpxRA activity could be a promising approach to regulating AIEC-involved Crohn's disease.


Asunto(s)
Adhesión Bacteriana , Modelos Animales de Enfermedad , Células Epiteliales , Infecciones por Escherichia coli , Escherichia coli , Fimbrias Bacterianas , Regulación Bacteriana de la Expresión Génica , Animales , Ratones , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Escherichia coli/genética , Escherichia coli/patogenicidad , Células Epiteliales/microbiología , Infecciones por Escherichia coli/microbiología , Adhesión Bacteriana/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Intestinos/microbiología , Femenino
4.
Microbiol Immunol ; 68(6): 206-211, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644589

RESUMEN

Colonization resistance, conferred by the host's microbiota through both direct and indirect protective actions, serves to protect the host from enteric infections. Here, we identified the specific members of the gut microbiota that impact gastrointestinal colonization by Citrobacter rodentium, a murine pathogen causing colonic crypt hyperplasia. The gut colonization levels of C. rodentium in C57BL/6 mice varied among breeding facilities, probably due to differences in microbiota composition. A comprehensive analysis of the microbiota revealed that specific members of the microbiota may influence gut colonization by C. rodentium, thus providing a potential link between the two.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Microbioma Gastrointestinal , Tracto Gastrointestinal , Ratones Endogámicos C57BL , Animales , Citrobacter rodentium/patogenicidad , Citrobacter rodentium/fisiología , Infecciones por Enterobacteriaceae/microbiología , Ratones , Tracto Gastrointestinal/microbiología , Colon/microbiología , Colon/patología , Heces/microbiología , ARN Ribosómico 16S/genética
5.
Ann Med Surg (Lond) ; 85(10): 4683-4688, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37811055

RESUMEN

Background: Patients with bilateral lower limb deep venous thrombosis (DVT) have a higher risk of pulmonary thromboembolism (PTE) and mortality than patients with unilateral lower limb DVT. Preoperative dilatation of the soleal vein (SV) diameter is a predictor of postoperative DVT. The purpose of this study is to investigate the cutoff value for SV diameter as a risk factor for VTE development. Materials and methods: The authors examined 274 patients with unilateral THA who met the inclusion criteria in a retrospective study. The mean age of the patients was 65.7±11.2 years, with 70 males and 204 females. Bilateral lower limb vein ultrasonography was performed preoperatively and ~1 week after THA. The frequency and localization of DVT were investigated in postoperative ultrasonography. The patients were divided into three groups: no DVT (non-DVT), unilateral lower limb DVT (Uni-DVT), and bilateral lower limb DVT (Bi-DVT). The three groups were compared in terms of preoperative venous vessel maximum diameter. Results: There were 62 patients (22.6%) who had postoperative DVT. There are no symptomatic PTE patients. DVT was found in 44 patients (16.0%) of the Uni-DVT group and 18 patients (6.6%) of the Bi-DVT group. The SV maximum diameter was 6.41±1.79 mm in the non-DVT group, 7.06±2.13 mm in the Uni-DVT group, and 8.06±2.26 mm in the Bi-DVT group, with a significant difference (P=0.001) between the non-DVT and Bi-DVT groups. In the Bi-DVT group, the cutoff value for preoperative SV maximum diameter was 6.75 mm (95% CI: 0.625-0.831; P=0.001; sensitivity, 77.8%; specificity, 60.4%; area under the curve, 0.728). Conclusions: In THA, preoperative ultrasonography with a maximum SV diameter of 6.75 mm or greater was the risk of bilateral DVT leading to fatal PTE is increased.

6.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37222466

RESUMEN

Bile acid resistance is crucial to allow probiotic strains to survive in the gastrointestinal tract and exert health-promoting effects on their hosts. Our aim here was to determine the mechanism of this resistance via a genetic approach by identifying the genes essential for bile acid resistance in Lacticaseibacillus paracasei strain Shirota (LcS). We generated 4649 transposon-inserted lines of L. paracasei YIT 0291, which has the same genome sequence as LcS but lacks the pLY101 plasmid, and we screened them for bile-acid-sensitive mutants. The growth of 14 mutated strains was strongly inhibited by bile acid, and we identified 10 genes that could be involved in bile acid resistance. Expression of these genes was not markedly induced by bile acid, suggesting that their homeostatic expression is important for exerting bile acid resistance. Two mutants in which the transposon was independently inserted into cardiolipin synthase (cls) genes, showed strong growth inhibition. Disruption of the cls genes in LcS caused decreased cardiolipin (CL) production and the accumulation of the precursor phosphatidylglycerol in bacterial cells. These data suggest that LcS possesses several mechanisms for exerting bile acid resistance, and that homeostatic CL production is among the factors most essential for this resistance.


Asunto(s)
Lacticaseibacillus casei , Lacticaseibacillus paracasei , Probióticos , Lacticaseibacillus , Ácidos y Sales Biliares/farmacología
7.
Infect Immun ; 90(7): e0018422, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35652649

RESUMEN

Long-chain-fatty-acid (LCFA) metabolism is a fundamental cellular process in bacteria that is involved in lipid homeostasis, energy production, and infection. However, the role of LCFA metabolism in Salmonella enterica serovar Typhimurium (S. Tm) gut infection remains unclear. Here, using a murine gastroenteritis infection model, we demonstrate involvement of LCFA metabolism in S. Tm gut colonization. The LCFA metabolism-associated transcriptional regulator FadR contributes to S. Tm gut colonization. fadR deletion alters the gene expression profile and leads to aberrant flagellar motility of S. Tm. Colonization defects in the fadR mutant are attributable to altered swimming behavior characterized by less frequently smooth swimming, resulting from reduced expression of the phase 2 flagellin FljB. Notably, changes in lipid LCFA composition by fadR deletion lead to reduced expression of fljB, which is restored by exogenous LCFA. Therefore, LCFA homeostasis may maintain proper flagellar motility by activating fljB expression, contributing to S. Tm gut colonization. Our findings improve the understanding of the effect of luminal LCFA on the virulence of enteric pathogens.


Asunto(s)
Flagelina , Salmonella typhimurium , Animales , Ácidos Grasos/metabolismo , Flagelina/metabolismo , Homeostasis , Lípidos , Ratones , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
8.
Environ Microbiol Rep ; 14(4): 637-645, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35581157

RESUMEN

Bifidobacterium bifidum possesses two extracellular sialidases (SiaBb1 and SiaBb2) that release free sialic acid from mucin sialoglycans, which can be utilized via cross-feeding by Bifidobacterium breve that, otherwise, is prevented from utilizing this nutrient source. Modification of sialic acids with O-acetyl esters is known to protect mucin glycans from degradation by bacterial sialidases. Compared to SiaBb2, SiaBb1 has an additional O-acetylesterase (Est) domain. We aimed to elucidate the role of the SiaBb1 Est domain from B. bifidum in sialic acid cross-feeding within Bifidobacterium. Pre-treatment of mucin secreted from bovine submaxillary glands (BSM) using His6 -tagged-Est and -SiaBb2 released a higher amount of sialic acid compared to the pre-treatment by His6 -SiaBb2. Growth of B. breve increased with an increase in nanE expression when supplemented with both His6 -Est- and His6 -SiaBb2-treated BSM. These results indicate that the esterase activity of the SiaBb1 Est domain enhances the efficiency of SiaBb2 to cleave sialic acid from mucin. This free sialic acid can be utilized by coexisting sialic acid scavenging B. breve via cross-feeding. Here, we provide the molecular mechanism underlying the unique sialoglycan degradation property of B. bifidum which is mediated by the complementary activities of SiaBb1 and SiaBb2 in the context of sialic acid cross-feeding.


Asunto(s)
Bifidobacterium bifidum , Bifidobacterium breve , Acetilesterasa/genética , Acetilesterasa/metabolismo , Animales , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/metabolismo , Bovinos , Proliferación Celular , Mucinas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidasa/genética , Neuraminidasa/metabolismo , Ácidos Siálicos/metabolismo
9.
Infect Immun ; 90(3): e0066221, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-34978926

RESUMEN

Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn's disease (CD). AIEC adapts to the gut environment by altering gene expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type 1 fimbria expression.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Acetatos/metabolismo , Animales , Adhesión Bacteriana/genética , Enfermedad de Crohn/microbiología , Células Epiteliales/microbiología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Mucosa Intestinal/metabolismo , Ratones
10.
Front Microbiol ; 12: 754819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721360

RESUMEN

There are numerous bacteria reside within the mammalian gastrointestinal tract. Among the intestinal bacteria, Akkermansia, Bacteroides, Bifidobacterium, and Ruminococcus closely interact with the intestinal mucus layer and are, therefore, known as mucosal bacteria. Mucosal bacteria use host or dietary glycans for colonization via adhesion, allowing access to the carbon source that the host's nutrients provide. Cell wall or membrane proteins, polysaccharides, and extracellular vesicles facilitate these mucosal bacteria-host interactions. Recent studies revealed that the physiological properties of Bacteroides and Bifidobacterium significantly change in the presence of co-existing symbiotic bacteria or markedly differ with the spatial distribution in the mucosal niche. These recently discovered strategic colonization processes are important for understanding the survival of bacteria in the gut. In this review, first, we introduce the experimental models used to study host-bacteria interactions, and then, we highlight the latest discoveries on the colonization properties of mucosal bacteria, focusing on the roles of the cell surface architecture regarding Bacteroides and Bifidobacterium.

11.
iScience ; 24(11): 103363, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34825137

RESUMEN

Bifidobacterium bifidum YIT 10347 (BF-1) is adhesive in vitro. Here we studied the molecular aspects of the BF-1 adhesion process. We identified and characterized non-adhesive mutants and found that a class E housekeeping sortase was critical for the adhesion to mucin. These mutants were significantly less adhesive to GCIY cells than was the wild type (WT), which protected GCIY cells against acid treatment more than did a non-adhesive mutant. The non-adhesive mutants aberrantly accumulated precursors of putative sortase-dependent proteins (SDPs). Recombinant SDPs bound to mucin. Disruption of the housekeeping sortase influenced expression of SDPs and pilus components. Mutants defective in a pilin or in an SDP showed the same adhesion properties as WT. Therefore, multiple SDPs and pili seem to work cooperatively to achieve adhesion, and the housekeeping sortase is responsible for cell wall anchoring of its substrates to ensure their proper biological function.

12.
PLoS One ; 16(3): e0248975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33735297

RESUMEN

Nuclear factor-kappa B (NF-κB) plays a critical role in the host defense against microbial pathogens. Many pathogens modulate NF-κB signaling to establish infection in their host. Salmonella enterica serovar Typhimurium (S. Typhimurium) possesses two type III secretion systems (T3SS-1 and T3SS-2) and directly injects many effector proteins into host cells. It has been reported that some effectors block NF-κB signaling, but the molecular mechanism of the inactivation of NF-κB signaling in S. Typhimurium is poorly understood. Here, we identified seven type III effectors-GogA, GtgA, PipA, SseK1, SseK2, SseK3, and SteE-that inhibited NF-κB activation in HeLa cells stimulated with TNF-α. We also determined that only GogA and GtgA are involved in regulation of the activation of NF-κB in HeLa cells infected with S. Typhimurium. GogA, GtgA, and PipA are highly homologous to one another and have the consensus zinc metalloprotease HEXXH motif. Our experiments demonstrated that GogA, GtgA, and PipA each directly cleaved NF-κB p65, whereas GogA and GtgA, but not PipA, inhibited the NF-κB activation in HeLa cells infected with S. Typhimurium. Further, expressions of the gogA or gtgA gene were induced under the SPI-1-and SPI-2-inducing conditions, but expression of the pipA gene was induced only under the SPI-2-inducing condition. We also showed that PipA was secreted into RAW264.7 cells through T3SS-2. Finally, we indicated that PipA elicits bacterial dissemination in the systemic stage of infection of S. Typhimurium via a T3SS-1-independent mechanism. Collectively, our results suggest that PipA, GogA and GtgA contribute to S. Typhimurium pathogenesis in different ways.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella typhimurium/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Animales , Células HeLa , Humanos , Metaloproteasas/metabolismo , Ratones , Ratones Endogámicos CBA , FN-kappa B/metabolismo , Células RAW 264.7 , Infecciones por Salmonella/metabolismo , Zinc/metabolismo
13.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32737132

RESUMEN

Extracellular proteins are important factors in host-microbe interactions; however, the specific factors that enable bifidobacterial adhesion and survival in the gastrointestinal (GI) tract are not fully characterized. Here, we discovered that Bifidobacterium longum NCC2705 cultured in bacterium-free supernatants of human fecal fermentation broth released a myriad of particles into the extracellular environment. The aim of this study was to characterize the physiological properties of these extracellular particles. The particles, approximately 50 to 80 nm in diameter, had high protein and double-stranded DNA contents, suggesting that they were extracellular vesicles (EVs). A proteomic analysis showed that the EVs primarily consisted of cytoplasmic proteins with crucial functions in essential cellular processes. We identified several mucin-binding proteins by performing a biomolecular interaction analysis of phosphoketolase, GroEL, elongation factor Tu (EF-Tu), phosphoglycerate kinase, transaldolase (Tal), and heat shock protein 20 (Hsp20). The recombinant GroEL and Tal proteins showed high binding affinities to mucin. Furthermore, the immobilization of these proteins on microbeads affected the permanence of the microbeads in the murine GI tract. These results suggest that bifidobacterial exposure conditions that mimic the intestine stimulate B. longum EV production. The resulting EVs exported several cytoplasmic proteins that may have promoted B. longum adhesion. This study improved our understanding of the Bifidobacterium colonization strategy in the intestinal microbiome.IMPORTANCEBifidobacterium is a natural inhabitant of the human gastrointestinal (GI) tract. Morphological observations revealed that extracellular appendages of bifidobacteria in complex microbial communities are important for understanding its adaptations to the GI tract environment. We identified dynamic extracellular vesicle (EV) production by Bifidobacterium longum in bacterium-free fecal fermentation broth that was strongly suggestive of differing bifidobacterial extracellular appendages in the GI tract. In addition, export of the adhesive moonlighting proteins mediated by EVs may promote bifidobacterial colonization. This study provides new insight into the roles of EVs in bifidobacterial colonization processes as these bacteria adapt to the GI environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium longum/metabolismo , Proteínas Portadoras/metabolismo , Vesículas Extracelulares/metabolismo , Mucinas/metabolismo , Proteínas Bacterianas/genética , Bifidobacterium longum/genética , Proteínas Portadoras/genética , Proteómica
14.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32284369

RESUMEN

Salmonella enterica serovar Typhimurium is an important foodborne pathogen that causes diarrhea. S. Typhimurium elicits inflammatory responses and colonizes the gut lumen by outcompeting the microbiota. Although evidence is accumulating with regard to the underlying mechanism, the infectious stage has not been adequately defined. Peptidoglycan amidases are widely distributed among bacteria and play a prominent role in peptidoglycan maintenance by hydrolyzing peptidoglycans. Amidase activation is required for the regulation of at least one of two cognate activators, NlpD or EnvC (also called YibP). Recent studies established that the peptidoglycan amidase AmiC-mediated cell division specifically confers a fitness advantage on S Typhimurium in the inflamed gut. However, it remains unknown which cognate activators are involved in the amidase activation and how the activators influence Salmonella sp. pathogenesis. Here, we characterize the role of two activators, NlpD and EnvC, in S Typhimurium cell division and gut infection. EnvC was found to contribute to cell division of S Typhimurium cells through the activation of AmiA and AmiC. The envC mutant exhibited impairments in gut infection, including a gut colonization defect and reduced ability to elicit inflammatory responses. Importantly, the colonization defect of the envC mutant was unrelated to the microbiota but was conferred by attenuated motility and chemotaxis of S Typhimurium cells, which were not observed in the amiA amiC mutant. Furthermore, the envC mutant was impaired in its induction of mucosal inflammation and sustained gut colonization. Collectively, our findings provide a novel insight into the peptidoglycan amidase/cognate activator circuits and their dependent pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/fisiología , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Ácido Desoxicólico/farmacología , Escherichia coli/fisiología , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Mutación , N-Acetil Muramoil-L-Alanina Amidasa/genética , Salmonella typhimurium/efectos de los fármacos
15.
Infect Immun ; 88(3)2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31818958

RESUMEN

The twin-arginine translocation (Tat) system is involved in not only a wide array of cellular processes but also pathogenesis in many bacterial pathogens; thus, this system is expected to become a novel therapeutic target to treat infections. To the best of our knowledge, involvement of the Tat system has not been reported in the gut infection caused by Citrobacter rodentium Here, we studied the role of Tat in C. rodentium gut infection, which resembles human infection with enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC). A C. rodentium Tat loss-of-function mutant displayed prolonged gut colonization, which was explained by reduced inflammatory responses and, particularly, neutrophil infiltration. Further, the Tat mutant had colonization defects upon coinfection with the wild-type strain of C. rodentium The Tat mutant also became hypersensitive to bile acids, and an increase in fecal bile acids fostered C. rodentium clearance from the gut lumen. Finally, we show that the chain form of C. rodentium cells, induced by a Tat-dependent cell division defect, exhibits impaired resistance to bile acids. Our findings indicate that the Tat system is involved in gut colonization by C. rodentium, which is associated with neutrophil infiltration and resistance to bile acids. Interventions that target the Tat system, as well as luminal bile acids, might thus be promising therapeutic strategies to treat human EHEC and EPEC infections.


Asunto(s)
Citrobacter rodentium/patogenicidad , Infecciones por Enterobacteriaceae/inmunología , Tracto Gastrointestinal/microbiología , Sistema de Translocación de Arginina Gemela/fisiología , Animales , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/farmacología , Citrobacter rodentium/efectos de los fármacos , Citrobacter rodentium/fisiología , Infecciones por Enterobacteriaceae/microbiología , Tracto Gastrointestinal/metabolismo , Ratones , Ratones Endogámicos C57BL
16.
Kyobu Geka ; 72(8): 641-643, 2019 Aug.
Artículo en Japonés | MEDLINE | ID: mdl-31353361

RESUMEN

We report a resected case of basaloid squamous cell carcinoma (BSC). BSC is a rare type of malignant lung tumor. A 79-year-old woman had a 13 mm tumor in the left upper lobe on chest computed tomography (CT). On fluorodeoxyglucose-position emission tomography (FDG-PET), the tumor showed the accumulation of FDG with an SUVmax of 14.7. A left upper lobectomy with lymph node dissection was performed by video-assisted thoracoscopic surgery. The pathological diagnosis was BSC (pT2aN0M0, stage IB). There was no recurrence following lung cancer resection for 12 months. BSC is generally poor prognosis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Pulmonares , Anciano , Femenino , Fluorodesoxiglucosa F18 , Humanos , Recurrencia Local de Neoplasia , Tomografía Computarizada por Rayos X
17.
Infect Immun ; 87(9)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235639

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) induces inflammatory changes in the ceca of streptomycin-pretreated mice. In this mouse model of colitis, the type III secretion system 1 (T3SS-1) has been shown to induce rapid inflammatory change in the cecum at early points, 10 to 24 h after infection. Five proteins, SipA, SopA, SopB, SopD, and SopE2, have been identified as effectors involved in eliciting intestinal inflammation within this time range. In contrast, a T3SS-1-deficient strain was shown to exhibit inflammatory changes in the cecum at 72 to 120 h postinfection. However, the effectors eliciting T3SS-1-independent inflammation remain to be clarified. In this study, we focused on two T3SS-2 phenotypes, macrophage proliferation and cytotoxicity, to identify the T3SS-2 effectors involved in T3SS-1-independent inflammation. We identified a mutant strain that could not induce cytotoxicity in a macrophage-like cell line and that reduced intestinal inflammation in streptomycin-pretreated mice. We also identified five T3SS-2 effectors, SifA, SpvB, SseF, SseJ, and SteA, associated with T3SS-1-independent macrophage cytotoxicity. We then constructed a strain lacking T3SS-1 and all the five T3SS-2 effectors, termed T1S5. The S. Typhimurium T1S5 strain significantly reduced cytotoxicity in macrophages in the same manner as a mutant invA spiB strain (T1T2). Finally, the T1S5 strain elicited no inflammatory changes in the ceca of streptomycin-pretreated mice. We conclude that these five T3SS-2 effectors contribute to T3SS-1-independent inflammation.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/fisiología , Colitis/microbiología , Salmonella enterica/patogenicidad , Estreptomicina/farmacología , Sistemas de Secreción Tipo III/fisiología , Animales , Ciego/patología , Colitis/patología , Modelos Animales de Enfermedad , Macrófagos/patología , Ratones , Proteínas de Microfilamentos/fisiología , Salmonella enterica/metabolismo
18.
Sci Rep ; 9(1): 4731, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30894579

RESUMEN

Several bacterial moonlighting proteins act as adhesion factors, which are important for bacterial colonization of the gastrointestinal (GI) tract. However, little is known about the adherence properties of moonlighting proteins in the GI tract. Here, we describe a new approach for visualizing the localization of moonlighting protein-coated fluorescent microbeads in the whole GI tract by using a tissue optical clearing method, using elongation factor Tu (EF-Tu) as an example. As a bacterial cell surface-localized protein mimic, recombinant EF-Tu from Lactobacillus reuteri was immobilized on microbeads. EF-Tu-coating promoted the interaction of the microbeads with a Caco-2 cell monolayer. Next, the microbeads were orally administered to mice. GI whole tissues were cleared in aqueous fructose solutions of increasing concentrations. At 1 h after administration, the microbeads were diffused from the stomach up to the cecum, and after 3 h, they were diffused throughout the intestinal tract. In the lower digestive tract, EF-Tu-beads were significantly more abundant than non-coated control beads, suggesting that EF-Tu plays an important role in the persistence of the microbeads in the GI tract. The new approach will help in evaluating how moonlighting proteins mediate bacterial colonization.


Asunto(s)
Adhesión Bacteriana , Proteínas Bacterianas/análisis , Tracto Gastrointestinal/microbiología , Factor Tu de Elongación Peptídica/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células CACO-2 , Difusión , Humanos , Limosilactobacillus reuteri/química , Proteínas de la Membrana/metabolismo , Ratones , Microesferas , Imagen Óptica/métodos
19.
Nature ; 566(7742): 110-114, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30675063

RESUMEN

Small intestinal mononuclear cells that express CX3CR1 (CX3CR1+ cells) regulate immune responses1-5. CX3CR1+ cells take up luminal antigens by protruding their dendrites into the lumen1-4,6. However, it remains unclear how dendrite protrusion by CX3CR1+ cells is induced in the intestine. Here we show in mice that the bacterial metabolites pyruvic acid and lactic acid induce dendrite protrusion via GPR31 in CX3CR1+ cells. Mice that lack GPR31, which was highly and selectively expressed in intestinal CX3CR1+ cells, showed defective dendrite protrusions of CX3CR1+ cells in the small intestine. A methanol-soluble fraction of the small intestinal contents of specific-pathogen-free mice, but not germ-free mice, induced dendrite extension of intestinal CX3CR1+ cells in vitro. We purified a GPR31-activating fraction, and identified lactic acid. Both lactic acid and pyruvic acid induced dendrite extension of CX3CR1+ cells of wild-type mice, but not of Gpr31b-/- mice. Oral administration of lactate and pyruvate enhanced dendrite protrusion of CX3CR1+ cells in the small intestine of wild-type mice, but not in that of Gpr31b-/- mice. Furthermore, wild-type mice treated with lactate or pyruvate showed an enhanced immune response and high resistance to intestinal Salmonella infection. These findings demonstrate that lactate and pyruvate, which are produced in the intestinal lumen in a bacteria-dependent manner, contribute to enhanced immune responses by inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+ cells.


Asunto(s)
Bacterias/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Extensiones de la Superficie Celular/metabolismo , Intestino Delgado/citología , Intestino Delgado/microbiología , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Bacterias/inmunología , Receptor 1 de Quimiocinas CX3C/deficiencia , Receptor 1 de Quimiocinas CX3C/genética , Extensiones de la Superficie Celular/efectos de los fármacos , Extensiones de la Superficie Celular/inmunología , Femenino , Células HEK293 , Humanos , Intestino Delgado/efectos de los fármacos , Intestino Delgado/inmunología , Ácido Láctico/farmacología , Lactobacillus helveticus/metabolismo , Masculino , Metanol , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ácido Pirúvico/farmacología , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Salmonella/inmunología , Salmonella/metabolismo
20.
PLoS Pathog ; 14(10): e1007391, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379938

RESUMEN

Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea.


Asunto(s)
Amidohidrolasas/metabolismo , Tracto Gastrointestinal/microbiología , Inflamación/microbiología , Peptidoglicano/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/fisiología , Sistema de Translocación de Arginina Gemela/metabolismo , Animales , División Celular , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Salmonelosis Animal/metabolismo , Salmonelosis Animal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA