Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 23(1): 313, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020276

RESUMEN

BACKGROUND: Genomic alterations, including loss of function in chromosome band 11q22-23, are frequently observed in neuroblastoma, which is the most common extracranial childhood tumour. In neuroblastoma, ATM, a DNA damage response-associated gene located on 11q22-23, has been linked to tumorigenicity. Genetic changes in ATM are heterozygous in most tumours. However, it is unclear how ATM is associated with tumorigenesis and cancer aggressiveness. METHODS: To elucidate its molecular mechanism of action, we established ATM-inactivated NGP and CHP-134 neuroblastoma cell lines using CRISPR/Cas9 genome editing. The knock out cells were rigorously characterized by analyzing proliferation, colony forming abilities and responses to PARP inhibitor (Olaparib). Western blot analyses were performed to detect different protein expression related to DNA repair pathway. ShRNA lentiviral vectors were used to knockdown ATM expression in SK-N-AS and SK-N-SH neuroblastoma cell lines. ATM knock out cells were stably transfected with FANCD2 expression plasmid to over-expressed the FANCD2. Moreover, knock out cells were treated with proteasome inhibitor MG132 to determine the protein stability of FANCD2. FANCD2, RAD51 and γH2AX protein expressions were determined by Immunofluorescence microscopy. RESULTS: Haploinsufficient ATM resulted in increased proliferation (p < 0.01) and cell survival following PARP inhibitor (olaparib) treatment. However, complete ATM knockout decreased proliferation (p < 0.01) and promoted cell susceptibility to olaparib (p < 0.01). Complete loss of ATM suppressed the expression of DNA repair-associated molecules FANCD2 and RAD51 and induced DNA damage in neuroblastoma cells. A marked downregulation of FANCD2 expression was also observed in shRNA-mediated ATM-knockdown neuroblastoma cells. Inhibitor experiments demonstrated that the degradation of FANCD2 was regulated at the protein level through the ubiquitin-proteasome pathway. Reintroduction of FANCD2 expression is sufficient to reverse decreased proliferation mediated by ATM depletion. CONCLUSIONS: Our study revealed the molecular mechanism underlying ATM heterozygosity in neuroblastomas and elucidated that ATM inactivation enhances the susceptibility of neuroblastoma cells to olaparib treatment. These findings might be useful in the treatment of high-risk NB patients showing ATM zygosity and aggressive cancer progression in future.


Asunto(s)
Antineoplásicos , Anemia de Fanconi , Neuroblastoma , Humanos , Niño , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Línea Celular Tumoral , Proteínas de la Ataxia Telangiectasia Mutada/genética , Antineoplásicos/uso terapéutico , ARN Interferente Pequeño/uso terapéutico , Neuroblastoma/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi
2.
Exp Cell Res ; 422(1): 113412, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36370852

RESUMEN

The overexpression of BMI1, a polycomb protein, correlates with cancer development and aggressiveness. We previously reported that MYCN-induced BMI1 positively regulated neuroblastoma (NB) cell proliferation via the transcriptional inhibition of tumor suppressors in NB cells. To assess the potential of BMI1 as a new target for NB therapy, we examined the effects of reductions in BMI1 on NB cells. BMI1 knockdown (KD) in NB cells significantly induced their differentiation for up to 7 days. BMI1 depletion significantly induced apoptotic NB cell death for up to 14 days along with the activation of p53, increases in p73, and induction of p53 family downstream molecules and pathways, even in p53 mutant cells. BMI1 depletion in vivo markedly suppressed NB xenograft tumor growth. BMI1 reductions activated ATM and increased γ-H2AX in NB cells. These DNA damage signals and apoptotic cell death were not canceled by the transduction of the polycomb group molecules EZH2 and RING1B. Furthermore, EZH2 and RING1B KD did not induce apoptotic NB cell death to the same extent as BMI1 KD. Collectively, these results suggest the potential of BMI1 as a target of molecular therapy for NB and confirmed, for the first time, the shared role of PcG proteins in the DNA damage response of NB cells.


Asunto(s)
Neuroblastoma , Proteína p53 Supresora de Tumor , Humanos , Proteínas del Grupo Polycomb/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Neuroblastoma/patología , Apoptosis/genética , Daño del ADN/genética , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo
3.
Drug Metab Pharmacokinet ; 47: 100469, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36174354

RESUMEN

We constructed tumor spheroids with a perfusable vascular network to assess drug delivery systems that target the tumor vasculature. A tricultured tumor spheroid containing human umbilical vein endothelial cells (HUVECs) was placed in the central compartment of a microfluidic device, and the HUVECs were seeded into the microslit channels on both sides. Angiogenic sprouts began to form within a few days, from both the tumor spheroids and microchannels, and became more abundant and branched, while attracting each other, over time. A continuous vascular network of HUVECs was fully formed on Day 7. The uptake of 3'-(1-carboxy)ethyl sialyl Lewis X mimic (3'-CE sLeX mimic) liposomes, which have previously been proven to recognize E-selectin, in vascular-perfusable tumor spheroids was assessed. 3'-CE sLeX mimic and pegylated liposomes were rarely taken up, but when the vascular network was pretreated with TNF-α and IL-1ß, 3'-CE sLeX mimic liposomes accumulated considerably more in endothelial cells and their vicinity. Taken together, along with the known in vivo expression of E-selectin in tumor angiogenic blood vessels, these results suggest that 3'-CE sLeX mimic liposomes are a promising carrier for targeting tumor vasculature. Furthermore, proinflammatory cytokine treatment may be appropriate for use with vascular-perfusable tumor spheroids in pharmacokinetic studies.


Asunto(s)
Selectina E , Neoplasias , Humanos , Selectina E/metabolismo , Liposomas , Células Endoteliales/metabolismo , Oligosacáridos/metabolismo
4.
Cancer Sci ; 113(12): 4193-4206, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36052716

RESUMEN

In the present study, we found that EZH1 depletion in MYCN-amplified neuroblastoma cells resulted in significant cell death as well as xenograft inhibition. EZH1 depletion decreased the level of H3K27me1; the interaction and protein stabilization of MYCN and EZH1 appear to play roles in epigenetic transcriptional regulation. Transcriptome analysis of EZH1-depleted cells resulted in downregulation of the cell cycle progression-related pathway. In particular, Gene Set Enrichment Analysis revealed downregulation of reactome E2F-mediated regulation of DNA replication along with key genes of this process, TYMS, POLA2, and CCNA1. TYMS and POLA2 were transcriptionally activated by MYCN and EZH1-related epigenetic modification. Treatment with the EZH1/2 inhibitor UNC1999 also induced cell death, decreased H3K27 methylation, and reduced the levels of TYMS in neuroblastoma cells. Previous reports indicated neuroblastoma cells are resistant to 5-fluorouracil (5-FU) and TYMS (encoding thymidylate synthetase) has been considered the primary site of action for folate analogues. Intriguingly, UNC1999 treatment significantly sensitized MYCN-amplified neuroblastoma cells to 5-FU treatment, suggesting that EZH inhibition could be an effective strategy for development of a new epigenetic treatment for neuroblastoma.


Asunto(s)
Neuroblastoma , Complejo Represivo Polycomb 2 , Humanos , Ciclo Celular , Línea Celular Tumoral , Fluorouracilo , Regulación Neoplásica de la Expresión Génica , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Complejo Represivo Polycomb 2/genética , Animales
5.
Lab Chip ; 22(3): 641-651, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35018934

RESUMEN

Three-dimensional (3D) tissue culture is a powerful tool for understanding physiological events. However, 3D tissues still have limitations in their size, culture period, and maturity, which are caused by the lack of nutrients and oxygen supply through the vasculature. Here, we propose a new method for culturing a 3D tissue-a spheroid-directly on an 'on-chip vascular bed'. The method can be applied to any 3D tissue because the vascular bed is preformed, so that angiogenic factors from the tissue are not necessary to induce vasculature. The essential component of the assay system is the removable membrane that initially separates the 3D tissue culture well and the microchannel in which a uniform vascular bed is formed, and then allows the tissue to be settled directly onto the vascular bed following its removal. This in vitro system offers a new technique for evaluating the effects of vasculature on 3D tissues.

6.
Biomaterials ; 229: 119547, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710953

RESUMEN

Tumor vasculature creates a hostile tumor microenvironment (TME) in vivo and nourishes cancers, resulting in cancer progression and drug resistance. To mimic the biochemical and biomechanical environments of tumors in vitro, several models integrated with a vascular network have been reported. However, the tumor responses to biochemical and biomechanical stimuli were evaluated under static conditions and failed to incorporate the effects of blood flow to tumors. In this study, we present a tumor-on-a-chip platform that enables the evaluation of tumor activities with intraluminal flow in an engineered tumor vascular network. The fibroblasts in the tumor spheroid induced angiogenic sprouts, which constructed a perfusable vascular network in a tumor spheroid. The perfusability of the engineered vascular network was preserved during the culture. Moreover, perfusion for over 24 h significantly increased the proliferation activities of tumor cells and decreased cell death in the spheroid. Drug administration under perfusion condition did not show the dose-dependent effects of anticancer drugs on tumor activities in contrast to the results under static conditions. Our results demonstrate the importance of flow in a vascular network for the evaluation of tumor activities in a drug screening platform.


Asunto(s)
Neoplasias , Preparaciones Farmacéuticas , Humanos , Dispositivos Laboratorio en un Chip , Neoplasias/tratamiento farmacológico , Perfusión , Microambiente Tumoral
7.
Nat Microbiol ; 4(5): 781-788, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778145

RESUMEN

Many Gram-negative pathogens utilize dedicated secretion systems to export virulence factors such as exotoxins and effectors1-4. Several exotoxins are synthesized as precursors containing amino-terminal Sec signal peptides and are exported through the inner-membrane-bound Sec machinery to the periplasm, followed by secretion across the outer membrane to the exterior using a type II secretion system (T2SS)3,5. Here, we report that thermostable direct haemolysin (TDH), an exotoxin of the food-borne pathogen Vibrio parahaemolyticus, can be exported through the type III secretion system (T3SS), which engages in one-step secretion of effectors4, despite possessing a Sec signal peptide and being mainly secreted via the T2SS. Although the precursor of TDH is targeted to the Sec pathway, a fraction of mature TDH was observed to re-enter the bacterial cytoplasm. The N terminus of mature TDH comprises a T3SS signal sequence, allowing it to be loaded into the T3SS. We also show that T3SS-delivered TDH as an effector contributes to intestinal fluid accumulation in a rabbit diarrhoeal model of V. parahaemolyticus infection. Thus, our results show that an unconventional export mechanism for a bacterial toxin via the T3SS in tandem with the Sec machinery facilitates the virulence trait of V. parahaemolyticus.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Vibriosis/microbiología , Vibrio parahaemolyticus/metabolismo , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Transporte Biológico , Femenino , Humanos , Ratones Endogámicos C3H , Conejos , Sistemas de Secreción Tipo III/genética , Vibrio parahaemolyticus/genética
8.
Cells Tissues Organs ; 204(5-6): 283-292, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29161703

RESUMEN

Stable and sustainable spermatogenesis is supported by the strict regulation of self-renewal and differentiation of spermatogonial stem cells (SSC), which are a rare population of undifferentiated spermatogonia. It has been revealed that some signaling factors regulate the self-renewal of SSC; however, the molecular mechanism of SSC maintenance is still not completely understood. Notch signaling is an evolutionarily conserved juxtacrine signaling that plays important roles in the cell fate determination of various tissue stem cells. Recently, analyses of loss- and gain-of-function suggested that Notch signaling was necessary for normal spermatogenesis. However, the expression of Notch signal components in spermatogonia is still unclear. Here, we analyzed the distribution of NOTCH3-expressing spermatogonia and the target genes. Double immunostaining with differentiation markers revealed that NOTCH3 was expressed in some undifferentiated and differentiated spermatogonia in mouse testes. To define the target gene of Notch3 signaling in spermatogonia, we analyzed the mRNA expression pattern of Hes and Hey family genes during testis development. Hes1 abundance was decreased during testis development, suggesting that spermatogonia may express Hes1. Immunohistochemical analysis showed that HES1 was expressed in prepubertal spermatogonia, whereas it was expressed predominantly in adult Sertoli cells and weakly in adult spermatogonia. Furthermore, NOTCH3-HES1 double-positive spermatogonia were in pup and adult testes. These results suggest that Notch3 signaling in spermatogonia could promote Hes1 expression.


Asunto(s)
Receptor Notch3/genética , Espermatogonias/metabolismo , Transcriptoma , Animales , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos ICR , Receptor Notch3/análisis , Espermatogénesis , Espermatogonias/citología , Testículo/citología , Testículo/crecimiento & desarrollo , Testículo/metabolismo
9.
PLoS One ; 12(11): e0187846, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29149170

RESUMEN

Vibrio parahaemolyticus is a Gram-negative pathogen that causes food-borne gastroenteritis. A major virulence determinant of the organism is a type III secretion system (T3SS2) encoded on a pathogenicity island, Vp-PAI. Vp-PAI gene expression is regulated by two transcriptional regulators, VtrA and VtrB, whose N-terminal regions share homology with an OmpR-family DNA-binding domain. VtrA activates the gene expression of VtrB, which in turn activates Vp-PAI gene expression; however, the mechanism of this transcriptional activation by VtrA is not well understood. In this study, we determined that VtrA is a membrane protein with a transmembrane (TM) domain, which was required for its transcriptional regulatory activity. Although the N-terminal region of VtrA alone is insufficient for its transcriptional regulatory activity, forced oligomerization using the leucine-zipper dimerization domain of yeast GCN4 conferred transcriptional regulatory activity and a greater affinity for the promoter region of vtrB. A ToxR-based assay demonstrated that VtrA oligomerizes in vivo. We also showed that bile, a host-derived activator of VtrA, induces the oligomerization of VtrA, which requires the C-terminal domain. The promoter region of vtrB contained repetitive T-rich DNA elements, which are important for vtrB transcriptional activation and are conserved among T3SS2-possessing Vibrio species. These findings propose that VtrA is active as oligomers, which may facilitate its N-terminus binding the target DNA, thus enhancing its transcriptional regulatory activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Vibrio parahaemolyticus/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/genética , Polimerizacion , Regiones Promotoras Genéticas , Activación Transcripcional , Vibrio parahaemolyticus/genética
10.
Regen Ther ; 3: 75-81, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31245476

RESUMEN

The regulation of Sertoli cells by some hormones and signaling factors is important for normal spermatogenesis. Notch signaling is considered to be necessary for normal spermatogenesis in mouse. In this study, we revealed two new facts about Sertoli cells by western blotting experiments on different types of primary cells and microdissected tubules. The first is that Sertoli cells express the Jagged1 ligand in mice testes. The second is that the expression level of Jagged1 oscillates in the seminiferous epithelial cycle. Therefore, we inferred that Jagged1 in Sertoli cells contributes to the Notch signaling involved in spermatogenesis. Furthermore, we examined the regulation of Jagged1 expression and found that Jagged1 expression was suppressed by cAMP signaling and was promoted by TNF-α signaling in Sertoli cells. When cAMP and TNF-α were simultaneously added to Sertoli cells, Jagged1 expression was suppressed. Therefore, cAMP signaling dominates Jagged1 expression over TNF-α signaling. These results suggest that cAMP signaling may cause the periodicity of Jagged1 expression in the seminiferous epithelial cycle, and controlling Jagged1 expression by adding TNF-α or cAMP may contribute to normal spermatogenesis in vitro.

11.
PLoS Pathog ; 11(3): e1004694, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25738744

RESUMEN

Vibrio parahaemolyticus is an important pathogen that causes food-borne gastroenteritis in humans. The type III secretion system encoded on chromosome 2 (T3SS2) plays a critical role in the enterotoxic activity of V. parahaemolyticus. Previous studies have demonstrated that T3SS2 induces actin stress fibers in various epithelial cell lines during infection. This stress fiber formation is strongly related to pathogenicity, but the mechanisms that underlie T3SS2-dependent actin stress fiber formation and the main effector have not been elucidated. In this study, we identified VopO as a critical T3SS2 effector protein that activates the RhoA-ROCK pathway, which is an essential pathway for the induction of the T3SS2-dependent stress fiber formation. We also determined that GEF-H1, a RhoA guanine nucleotide exchange factor (GEF), directly binds VopO and is necessary for T3SS2-dependent stress fiber formation. The GEF-H1-binding activity of VopO via an alpha helix region correlated well with its stress fiber-inducing capacity. Furthermore, we showed that VopO is involved in the T3SS2-dependent disruption of the epithelial barrier. Thus, VopO hijacks the RhoA-ROCK pathway in a different manner compared with previously reported bacterial toxins and effectors that modulate the Rho GTPase signaling pathway.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal/fisiología , Vibrio parahaemolyticus/metabolismo , Actinas/metabolismo , Humanos , Microtúbulos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
12.
Cell Microbiol ; 17(2): 183-90, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25495647

RESUMEN

Vibrio parahaemolyticus is a leading causative agent of seafood-borne gastroenteritis worldwide. Most clinical isolates from patients with diarrhoea possess two sets of genes for the type III secretion system (T3SS) on each chromosome (T3SS1 and T3SS2). T3SS is a protein secretion system that delivers effector proteins directly into eukaryotic cells. The injected effectors modify the normal cell functions by altering or disrupting the normal cell signalling pathways. Of the two sets of T3SS genes present in V. parahaemolyticus, T3SS2 is essential for enterotoxicity in several animal models. Recent studies have elucidated the biological activities of several T3SS2 effectors and their roles in virulence. This review focuses on the regulation of T3SS2 gene expression and T3SS2 effectors that specifically target the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Sistemas de Secreción Bacterianos , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Vibrio parahaemolyticus/fisiología , Animales , Diarrea/microbiología , Humanos , Vibriosis/microbiología , Vibrio parahaemolyticus/metabolismo
13.
Cell Microbiol ; 16(6): 938-47, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24345190

RESUMEN

Vibrio parahaemolyticus is a Gram-negative marine bacterium that causes acute gastroenteritis in humans. The virulence of V. parahaemolyticus is dependent upon a type III secretion system (T3SS2). One effector for T3SS2, VopC, is a homologue of the catalytic domain of cytotoxic necrotizing factor (CNF), and was recently reported to be a Rho family GTPase activator and to be linked to internalization of V. parahaemolyticus by non-phagocytic cultured cells. Here, we provide direct evidence that VopC deamidates Rac1 and CDC42, but not RhoA, in vivo. Our results alsosuggest that VopC, through its activation of Rac1, contributes to formation of actin stress fibres in infected cells. Invasion of host cells, which occurs at a low frequency, does not seem linked to Rac1 activation, but instead appears to require CDC42. Finally, using an infant rabbit model of V. parahaemolyticus infection, we show that the virulence of V. parahaemolyticus is not dependent upon VopC-mediated invasion. Genetic inactivation of VopC did not impair intestinal colonization nor reduce signs of disease, including fluid accumulation, diarrhoea and tissue destruction. Thus, although VopC can promote host cell invasion, such internalization is not a critical step of the disease process, consistent with the traditional view of V. parahaemolyticus as an extracellular pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endocitosis , Interacciones Huésped-Patógeno , Vibriosis/microbiología , Vibrio parahaemolyticus/fisiología , Factores de Virulencia/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Células CACO-2 , Modelos Animales de Enfermedad , Humanos , Conejos , Vibriosis/patología , Vibrio parahaemolyticus/patogenicidad , Virulencia , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...