Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS One ; 19(5): e0303375, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728348

RESUMEN

Hearing loss is a pivotal risk factor for dementia. It has recently emerged that a disruption in the intercommunication between the cochlea and brain is a key process in the initiation and progression of this disease. However, whether the cochlear properties can be influenced by pathological signals associated with dementia remains unclear. In this study, using a mouse model of Alzheimer's disease (AD), we investigated the impacts of the AD-like amyloid ß (Aß) pathology in the brain on the cochlea. Despite little detectable change in the age-related shift of the hearing threshold, we observed quantitative and qualitative alterations in the protein profile in perilymph, an extracellular fluid that fills the path of sound waves in the cochlea. Our findings highlight the potential contribution of Aß pathology in the brain to the disturbance of cochlear homeostasis.


Asunto(s)
Enfermedad de Alzheimer , Cóclea , Modelos Animales de Enfermedad , Perilinfa , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Perilinfa/metabolismo , Cóclea/metabolismo , Cóclea/patología , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología
2.
J Pharmacol Sci ; 155(1): 14-20, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553134

RESUMEN

L-type amino acid transporter 1 (LAT1) is recognized as a promising target for cancer therapy; however, the cellular adaptive response to its pharmacological inhibition remains largely unexplored. This study examined the adaptive response to LAT1 inhibition using nanvuranlat, a high-affinity LAT1 inhibitor. Proteomic analysis revealed the activation of a stress-induced transcription factor ATF4 following LAT1 inhibition, aligning with the known cellular responses to amino acid deprivation. This activation was linked to the GCN2-eIF2α pathway which regulates translation initiation. Our results show that ATF4 upregulation counteracts the suppressive effect of nanvuranlat on cell proliferation in pancreatic ductal adenocarcinoma cell lines, suggesting a role for ATF4 in cellular adaptation to LAT1 inhibition. Importantly, dual targeting of LAT1 and ATF4 exhibited more substantial anti-proliferative effects in vitro than individual treatments. This study underscores the potential of combining LAT1 and ATF4 inhibition as a therapeutic strategy in cancer treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Regulación hacia Arriba , Proteómica , Aminoácidos/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Línea Celular Tumoral , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo
3.
J Pharmacol Sci ; 154(4): 301-311, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38485348

RESUMEN

Amino acid transporter LAT1 is highly upregulated in various cancer types, including cholangiocarcinoma (CHOL), and contributes to the rapid proliferation of cancer cells and disease progression. However, the molecular mechanisms underlying the pathological upregulation of LAT1 remain largely unknown. This study pursued the possibility of miRNA-mediated regulation of the LAT1 expression in CHOL cells. Using online target prediction methods, we extracted five candidate miRNAs commonly predicted to regulate the LAT1 expression. Three of them, miR-194-5p, miR-122-5p, and miR-126-3p, were significantly downregulated in CHOL cancer compared to normal tissues. Correlation analysis revealed weak-to-moderate negative correlations between the expression of these miRNAs and LAT1 mRNA in CHOL cancer tissues. We selected miR-194-5p and miR-122-5p for further analyses and found that both miRNAs functionally target 3'UTR of LAT1 mRNA by a luciferase-based reporter assay. Transfection of the miRNA mimics significantly suppressed the LAT1 expression at mRNA and protein levels and inhibited the proliferation of CHOL cells, with a trend of affecting intracellular amino acids and amino acid-related signaling pathways. This study indicates that the decreased expression of these LAT1-targeting tumor-suppressive miRNAs contributes to the upregulation of LAT1 and the proliferation of CHOL cells, highlighting their potential for developing novel cancer therapeutics and diagnostics.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Línea Celular Tumoral , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , ARN Mensajero/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética
4.
Sci Rep ; 14(1): 4651, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409393

RESUMEN

L-type amino acid transporter 1 (LAT1) is a transmembrane protein responsible for transporting large neutral amino acids. While numerous LAT1-targeted compound delivery for the brain and tumors have been investigated, their LAT1 selectivity often remains ambiguous despite high LAT1 affinity. This study assessed the LAT1 selectivity of phenylalanine (Phe) analogs, focusing on their structure-activity characteristics. We discovered that 2-iodo-L-phenylalanine (2-I-Phe), with an iodine substituent at position 2 in the benzene ring, markedly improves LAT1 affinity and selectivity compared to parent amino acid Phe, albeit at the cost of reduced transport velocity. L-Phenylglycine (Phg), one carbon shorter than Phe, was found to be a substrate for LAT1 with a lower affinity, exhibiting a low level of selectivity for LAT1 equivalent to Phe. Notably, (R)-2-amino-1,2,3,4-tetrahydro-2-naphthoic acid (bicyclic-Phe), with an α-methylene moiety akin to the α-methyl group in α-methyl-L-phenylalanine (α-methyl-Phe), a known LAT1-selective compound, showed similar LAT1 transport maximal velocity to α-methyl-Phe, but with higher LAT1 affinity and selectivity. In vivo studies revealed tumor-specific accumulation of bicyclic-Phe, underscoring the importance of LAT1-selectivity in targeted delivery. These findings emphasize the potential of bicyclic-Phe as a promising LAT1-selective component, providing a basis for the development of LAT1-targeting compounds based on its structural framework.


Asunto(s)
Aminoácidos , Fenilalanina , Fenilalanina/metabolismo , Aminoácidos/metabolismo , Encéfalo/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Transporte Biológico
5.
J Pharmacol Sci ; 154(3): 182-191, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395519

RESUMEN

L-type amino acid transporter 1 (LAT1, SLC7A5) is upregulated in various cancers and associated with disease progression. Nanvuranlat (Nanv; JPH203, KYT-0353), a selective LAT1 inhibitor, suppresses the uptake of large neutral amino acids required for rapid growth and proliferation of cancer cells. Previous studies have suggested that the inhibition of LAT1 by Nanv induces the cell cycle arrest at G0/G1 phase, although the underlying mechanisms remain unclear. Using pancreatic cancer cells arrested at the restriction check point (R) by serum deprivation, we found that the Nanv drastically suppresses the G0/G1-S transition after release. This blockade of the cell cycle progression was accompanied by a sustained activation of p38 mitogen-activated protein kinase (MAPK) and subsequent phosphorylation-dependent proteasomal degradation of cyclin D1. Isoform-specific knockdown of p38 MAPK revealed the predominant contribution of p38α. Proteasome inhibitors restored the cyclin D1 amount and released the cell cycle arrest caused by Nanv. The increased phosphorylation of p38 MAPK and the decrease of cyclin D1 were recapitulated in xenograft tumor models treated with Nanv. This study contributes to delineating the pharmacological activities of LAT1 inhibitors as anti-cancer agents and provides significant insights into the molecular basis of the amino acid-dependent cell cycle checkpoint at G0/G1 phase.


Asunto(s)
Ciclina D1 , Neoplasias , Humanos , Ciclina D1/genética , Ciclina D1/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Fase G1 , Fosforilación , Puntos de Control del Ciclo Celular , Proliferación Celular/genética
6.
Sci Rep ; 13(1): 13943, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626086

RESUMEN

Metastasis is the leading cause of mortality in cancer patients. L-type amino acid transporter 1 (LAT1, SLC7A5) is a Na+-independent neutral amino acid transporter highly expressed in various cancers to support their growth. Although high LAT1 expression is closely associated with cancer metastasis, its role in this process remains unclear. This study aimed to investigate the effect of LAT1 inhibition on cancer metastasis using B16-F10 melanoma mouse models. Our results demonstrated that nanvuranlat (JPH203), a high-affinity LAT1-selective inhibitor, suppressed B16-F10 cell proliferation, migration, and invasion. Similarly, LAT1 knockdown reduced cell proliferation, migration, and invasion. LAT1 inhibitors and LAT1 knockdown diminished B16-F10 lung metastasis in a lung metastasis model. Furthermore, nanvuranlat and LAT1 knockdown suppressed lung, spleen, and lymph node metastasis in an orthotopic metastasis model. We discovered that the LAT1 inhibitor reduced the cell surface expression of integrin αvß3. Our findings revealed that the downregulation of the mTOR signaling pathway, induced by LAT1 inhibitors, decreased the expression of integrin αvß3, contributing to the suppression of metastasis. These results highlight the critical role of LAT1 in cancer metastasis and suggest that LAT1 inhibition may serve as a potential target for anti-metastasis cancer therapy.


Asunto(s)
Neoplasias Pulmonares , Melanoma Experimental , Neoplasias Primarias Secundarias , Animales , Ratones , Sistemas de Transporte de Aminoácidos , Modelos Animales de Enfermedad , Integrina alfaVbeta3 , Transportador de Aminoácidos Neutros Grandes 1/genética , Neoplasias Pulmonares/genética , Melanoma Experimental/genética
7.
Cancer Cell Int ; 23(1): 116, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322479

RESUMEN

BACKGROUND: Cytotoxic anticancer drugs widely used in cancer chemotherapy have some limitations, such as the development of side effects and drug resistance. Furthermore, monotherapy is often less effective against heterogeneous cancer tissues. Combination therapies of cytotoxic anticancer drugs with molecularly targeted drugs have been pursued to solve such fundamental problems. Nanvuranlat (JPH203 or KYT-0353), an inhibitor for L-type amino acid transporter 1 (LAT1; SLC7A5), has novel mechanisms of action to suppress the cancer cell proliferation and tumor growth by inhibiting the transport of large neutral amino acids into cancer cells. This study investigated the potential of the combined use of nanvuranlat and cytotoxic anticancer drugs. METHODS: The combination effects of cytotoxic anticancer drugs and nanvuranlat on cell growth were examined by a water-soluble tetrazolium salt assay in two-dimensional cultures of pancreatic and biliary tract cancer cell lines. To elucidate the pharmacological mechanisms underlying the combination of gemcitabine and nanvuranlat, we investigated apoptotic cell death and cell cycle by flow cytometry. The phosphorylation levels of amino acid-related signaling pathways were analyzed by Western blot. Furthermore, growth inhibition was examined in cancer cell spheroids. RESULTS: All the tested seven types of cytotoxic anticancer drugs combined with nanvuranlat significantly inhibited the cell growth of pancreatic cancer MIA PaCa-2 cells compared to their single treatment. Among them, the combined effects of gemcitabine and nanvuranlat were relatively high and confirmed in multiple pancreatic and biliary tract cell lines in two-dimensional cultures. The growth inhibitory effects were suggested to be additive but not synergistic under the tested conditions. Gemcitabine generally induced cell cycle arrest at the S phase and apoptotic cell death, while nanvuranlat induced cell cycle arrest at the G0/G1 phase and affected amino acid-related mTORC1 and GAAC signaling pathways. In combination, each anticancer drug basically exerted its own pharmacological activities, although gemcitabine more strongly influenced the cell cycle than nanvuranlat. The combination effects of growth inhibition were also verified in cancer cell spheroids. CONCLUSIONS: Our study demonstrates the potential of first-in-class LAT1 inhibitor nanvuranlat as a concomitant drug with cytotoxic anticancer drugs, especially gemcitabine, on pancreatic and biliary tract cancers.

8.
Cancer Metab ; 10(1): 18, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357940

RESUMEN

BACKGROUND: Cancer-upregulated L-type amino acid transporter 1 (LAT1; SLC7A5) supplies essential amino acids to cancer cells. LAT1 substrates are not only needed for cancer rapid growth, but involved in cellular signaling. LAT1 has been proposed as a potential target for cancer treatment-its inhibitor, JPH203, is currently in clinical trials and targets biliary tract cancer (BTC). Here, we revealed to what extent LAT1 inhibitor affects intracellular amino acid content and what kind of cellular signals are directly triggered by LAT1 inhibition. METHODS: Liquid chromatography assay combined with o-phthalaldehyde- and 9-fluorenyl-methylchloroformate-based derivatization revealed changes in intracellular amino acid levels induced by LAT1 inhibition with JPH203 treatment in three BTC cell lines. Tandem mass tag-based quantitative phosphoproteomics characterized the effect of JPH203 treatment on BTC cells, and suggested key regulators in LAT1-inhibited cells. We further studied one of the key regulators, CK2 protein kinase, by using Western blot, enzymatic activity assay, and co-immunoprecipitation. We evaluated anticancer effects of combination of JPH203 with CK2 inhibitor using cell growth and would healing assay. RESULTS: JPH203 treatment decreased intracellular levels of LAT1 substrates including essential amino acids of three BTC cell lines, immediately and drastically. We also found levels of some of these amino acids were partially recovered after longer-time treatment. Therefore, we performed phosphoproteomics with short-time JPH203 treatment prior to the cellular compensatory response, and revealed hundreds of differentially phosphorylated sites. Commonly downregulated phosphorylation sites were found on proteins involved in the cell cycle and RNA splicing. Our phosphoproteomics also suggested key regulators immediately responding to LAT1 inhibition. Focusing on one of these regulators, protein kinase CK2, we revealed LAT1 inhibition decreased phosphorylation of CK2 substrate without changing CK2 enzymatic activity. Furthermore, LAT1 inhibition abolished interaction between CK2 and its regulatory protein NOLC1, which suggests regulatory mechanism of CK2 substrate protein specificity controlled by LAT1 inhibition. Moreover, we revealed that the combination of JPH203 with CK2 inhibitor resulted in the enhanced inhibition of proliferation and migration of BTC cells. CONCLUSION: This study provides new perspectives on LAT1-dependent cellular processes and a rationale for therapeutics targeting reprogrammed cancer metabolism.

9.
J Struct Biol ; 214(4): 107904, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228973

RESUMEN

Fatty acid kinase is necessary for the incorporation of exogenous fatty acids into membrane phospholipids. Fatty acid kinase consists of two components: a kinase component, FakA, that phosphorylates a fatty acid bound to a fatty acid-binding component, FakB. However, the molecular details underlying the phosphotransfer reaction remain to be resolved. We determined the crystal structure of the N-terminal domain of FakA bound to ADP from Thermus thermophilus HB8. The overall structure of this domain showed that the helical barrel fold is similar to the nucleotide-binding component of dihydroxyacetone kinase. The structure of the nucleotide-binding site revealed the roles of the conserved residues in recognition of ADP and Mg2+, but the N-terminal domain of FakA lacked the ADP-capping loop found in the dihydroxyacetone kinase component. Based on the structural similarity to the two subunits of dihydroxyacetone kinase complex, we constructed a model of the complex of T. thermophilus FakB and the N-terminal domain of FakA. In this model, the invariant Arg residue of FakB occupied a position that was spatially similar to that of the catalytically important Arg residue of dihydroxyacetone kinase, which predicted a composite active site in the Fatty acid kinase complex.


Asunto(s)
Ácidos Grasos , Thermus thermophilus , Adenosina Difosfato
10.
J Cell Mol Med ; 26(20): 5246-5256, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36071551

RESUMEN

L-type amino acid transporter 1 (LAT1; SLC7A5), which preferentially transports large neutral amino acids, is highly upregulated in various cancers. LAT1 supplies cancer cells with amino acids as substrates for enhanced biosynthetic and bioenergetic reactions and stimulates signalling networks involved in the regulation of survival, growth and proliferation. LAT1 inhibitors show anti-cancer effects and a representative compound, JPH203, is under clinical evaluation. However, pharmacological impacts of LAT1 inhibition on the cellular amino acid transport and the translational activity in cancer cells that are conceptually pivotal for its anti-proliferative effect have not been elucidated yet. Here, we demonstrated that JPH203 drastically inhibits the transport of all the large neutral amino acids in pancreatic ductal adenocarcinoma cells. The inhibitory effects of JPH203 were observed even in competition with high concentrations of amino acids in a cell culture medium. The analyses of the nutrient-sensing mTORC1 and GAAC pathways and the protein synthesis activity revealed that JPH203 downregulates the global translation. This study demonstrates a predominant contribution of LAT1 to the transport of large neutral amino acids in cancer cells and the suppression of protein synthesis by JPH203 supposed to underly its broad anti-proliferative effects across various types of cancer cells.


Asunto(s)
Aminoácidos Neutros , Neoplasias , Aminoácidos , Línea Celular Tumoral , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
11.
J Pharmacol Sci ; 150(1): 41-48, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35926947

RESUMEN

OAT10 (SLC22A13) is a transporter highly expressed in renal tubules and transporting organic anions including nicotinate, ß-hydroxybutyrate, p-aminohippurate, and orotate. In transport assays using Xenopus oocytes and HEK293 cells, we found that apparent substrate selectivity of OAT10 was different between the expression systems, particularly less pronounced uptake of ß-hydroxybutyrate in HEK293 cells. Because functional coupling between transporters may interfere with functional properties of the transporter, we searched for endogenous transporters in HEK293 cells that could affect OAT10. By means of comprehensive approach with co-immunoprecipitation followed by LC-MS/MS analysis, we identified monocarboxylate transporter MCT1 (SLC16A1) as physically coupled with OAT10. The knockdown of MCT1 in OAT10-expressing HEK293 cells increased the uptake of ß-hydroxybutyrate and nicotinate, common substrates of OAT10 and MCT1, whereas the uptake of orotate, a substrate of only OAT10, was not affected. MCT1 is supposed to act as an escape route and mediate the efflux of nicotinate and ß-hydroxybutyrate taken up by OAT10 localized nearby MCT1, as suggested by co-immunoprecipitation. This functional coupling would explain altered apparent substrate selectivity in HEK293 cells compared with Xenopus oocytes. The findings in this study warn in transporter studies that the expression system can interfere with assessing correct transport properties due to unexpected interactions with endogenous transporters.


Asunto(s)
Niacina , Transportadores de Anión Orgánico , Ácido 3-Hidroxibutírico , Transporte Biológico , Proteínas Portadoras/metabolismo , Cromatografía Liquida , Células HEK293 , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Niacina/metabolismo , Transportadores de Anión Orgánico/metabolismo , Espectrometría de Masas en Tándem
12.
Cancer Sci ; 112(2): 871-883, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33264461

RESUMEN

L-type amino acid transporter 1 (LAT1) is highly expressed in various cancers and plays important roles not only in the amino acid uptake necessary for cancer growth but also in cellular signaling. Recent research studies have reported anticancer effects of LAT1 inhibitors and demonstrated their potential for cancer therapy. Here, we characterized the proteome and phosphoproteome in LAT1-inhibited cancer cells. We used JPH203, a selective LAT1 inhibitor, and performed tandem mass tag-based quantitative proteomics and phosphoproteomics on four biliary tract cancer cell lines sensitive to JPH203. Our analysis identified hundreds to thousands of differentially expressed proteins and phosphorylated sites, demonstrating the broad influence of LAT1 inhibition. Our findings showed various functional pathways altered by LAT1 inhibition, and provided possible regulators and key kinases in LAT1-inhibited cells. Comparison of these changes among cell lines provides insights into general pathways and regulators associated with LAT1 inhibition and particularly suggests the importance of cell cycle-related pathways and kinases. Moreover, we evaluated the anticancer effects of the combinations of JPH203 with cell cycle-related kinase inhibitors and demonstrated their potential for cancer therapy. This is the first study providing the proteome-wide scope of both protein expression and phosphorylation signaling perturbed by LAT1 inhibition in cancer cells.


Asunto(s)
Benzoxazoles/farmacología , Proliferación Celular/efectos de los fármacos , Citostáticos/farmacología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Tirosina/análogos & derivados , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Proteómica , Tirosina/farmacología
13.
FEBS Lett ; 595(2): 264-274, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33159808

RESUMEN

Thermophilic proteins maintain their structure at high temperatures through a combination of various factors. Here, we report the ligand-induced stabilization of a thermophilic Ser/Thr protein kinase. Thermus thermophilus TpkD unfolds completely at 55 °C despite the optimum growth temperature of 75 °C. Unexpectedly, we found that the TpkD structure is drastically stabilized by its natural ligands ATP and ADP, as evidenced by the increase in the melting temperature to 80 °C. Such a striking effect of a substrate on thermostability has not been reported for other protein kinases. Conformational changes upon ATP binding were observed in fluorescence quenching and limited proteolysis experiments. Urea denaturation of Trp mutants suggested that ATP binding affects not only the ATP-binding site, but also the remote regions. Our findings shed light on thermoadaptation of thermophilic proteins.


Asunto(s)
Mutación , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Thermus thermophilus/enzimología , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Dicroismo Circular , Estabilidad de Enzimas , Ligandos , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Proteolisis , Thermus thermophilus/genética , Temperatura de Transición
14.
J Exp Clin Cancer Res ; 39(1): 266, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33256804

RESUMEN

BACKGROUND: Tumor angiogenesis is regarded as a rational anti-cancer target. The efficacy and indications of anti-angiogenic therapies in clinical practice, however, are relatively limited. Therefore, there still exists a demand for revealing the distinct characteristics of tumor endothelium that is crucial for the pathological angiogenesis. L-type amino acid transporter 1 (LAT1) is well known to be highly and broadly upregulated in tumor cells to support their growth and proliferation. In this study, we aimed to establish the upregulation of LAT1 as a novel general characteristic of tumor-associated endothelial cells as well, and to explore the functional relevance in tumor angiogenesis. METHODS: Expression of LAT1 in tumor-associated endothelial cells was immunohistologically investigated in human pancreatic ductal adenocarcinoma (PDA) and xenograft- and syngeneic mouse tumor models. The effects of pharmacological and genetic ablation of endothelial LAT1 were examined in aortic ring assay, Matrigel plug assay, and mouse tumor models. The effects of LAT1 inhibitors and gene knockdown on cell proliferation, regulation of translation, as well as on the VEGF-A-dependent angiogenic processes and intracellular signaling were investigated in in vitro by using human umbilical vein endothelial cells. RESULTS: LAT1 was highly expressed in vascular endothelial cells of human PDA but not in normal pancreas. Similarly, high endothelial LAT1 expression was observed in mouse tumor models. The angiogenesis in ex/in vivo assays was suppressed by abrogating the function or expression of LAT1. Tumor growth in mice was significantly impaired through the inhibition of angiogenesis by targeting endothelial LAT1. LAT1-mediated amino acid transport was fundamental to support endothelial cell proliferation and translation initiation in vitro. Furthermore, LAT1 was required for the VEGF-A-dependent migration, invasion, tube formation, and activation of mTORC1, suggesting a novel cross-talk between pro-angiogenic signaling and nutrient-sensing in endothelial cells. CONCLUSIONS: These results demonstrate that the endothelial LAT1 is a novel key player in tumor angiogenesis, which regulates proliferation, translation, and pro-angiogenic VEGF-A signaling. This study furthermore indicates a new insight into the dual functioning of LAT1 in tumor progression both in tumor cells and stromal endothelium. Therapeutic inhibition of LAT1 may offer an ideal option to potentiate anti-angiogenic therapies.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Carcinoma Ductal Pancreático/irrigación sanguínea , Endotelio Vascular/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Pancreáticas/irrigación sanguínea , Factor A de Crecimiento Endotelial Vascular/metabolismo , Sistema de Transporte de Aminoácidos y+L/metabolismo , Animales , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular/fisiología , Endotelio Vascular/patología , Femenino , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Melanoma Experimental/irrigación sanguínea , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neoplasias Pancreáticas/metabolismo , Transducción de Señal
15.
J Pharmacol Exp Ther ; 375(3): 451-462, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32981893

RESUMEN

Halogenated tyrosine/phenylalanine derivatives have been developed for use in tumor imaging and targeted alpha therapy. 3-Fluoro-α-methyl-l-tyrosine (FAMT), targeting amino acid transporter LAT1 (SLC7A5), is a cancer-specific positron emission tomography probe that exhibits high renal accumulation, which is supposed to be mediated by organic anion transporter OAT1 (SLC22A6). In the present study, we investigated the structural requirements of FAMT essential for interaction with OAT1. OAT1 transported FAMT with a K m of 171.9 µM. In structure-activity relationship analyses, removal of either the 3-halogen or 4-hydroxyl group from FAMT or its structural analog 3-iodo-α-methyl-l-tyrosine greatly decreased the interaction with OAT1, reducing the [14C]p-aminohippurate uptake inhibition and the efflux induction. By contrast, the α-methyl group, which is essential for LAT1 specificity, contributed to a lesser degree. In fluorinated tyrosine derivatives, fluorine at any position was accepted by OAT1 when there was a hydroxyl group at the ortho-position, whereas ortho-fluorine was less interactive when a hydroxyl group was at meta- or para-positions. The replacement of the ortho-fluorine with a bulky iodine atom greatly increased the interaction. In in vivo studies, probenecid decreased the renal accumulation (P < 0.001) and urinary excretion (P = 0.0012) of FAMT, whereas the plasma concentration was increased, suggesting the involvement of OAT1-mediated transepithelial organic anion excretion. LAT1-specific 2-fluoro-α-methyltyrosine, which had lower affinity for OAT1, exhibited lower renal accumulation (P = 0.0142) and higher tumor uptake (P = 0.0192) compared with FAMT. These results would provide a basis to design tumor-specific compounds that can avoid renal accumulation for tumor imaging and targeted alpha therapy. SIGNIFICANCE STATEMENT: We revealed the structural characteristics of halogenated tyrosine derivatives essential for interaction with the organic anion transporter responsible for their renal accumulation. We have confirmed that such interactions are important for renal handling and tumor uptake. The critical contribution of hydroxyl and halogen groups and their positions as well as the role of α-methyl group found in the present study may facilitate the development of tumor-specific compounds while avoiding renal accumulation for use in tumor imaging and targeted alpha therapy.


Asunto(s)
Riñón/diagnóstico por imagen , Metiltirosinas/metabolismo , Imagen Molecular/métodos , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Animales , Línea Celular Tumoral , Humanos , Metiltirosinas/química , Metiltirosinas/farmacocinética , Ratones , Unión Proteica , Distribución Tisular
16.
Mol Cell Proteomics ; 18(2): 245-262, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30381327

RESUMEN

Neurofibromatosis type 1 (NF1) is an autosomal dominant disease that predisposes individuals to developing benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). The mechanism of NF1-tumorigenesis or the curatives have not been established. Using unique trascriptome and proteome integration method, iPEACH (1), we previously identified translationally controlled tumor protein (TCTP) as a novel biological target for NF1-associated tumors (2). Here, we identified specific TCTP-interacting proteins by sequential affinity purification and data-independent mass spectrometry acquisition (AP-DIA/SWATH) to investigate the role of TCTP in NF1-associated malignant tumors. TCTP mainly interacts with proteins related to protein synthesis and especially to elongation factor complex components, including EF1A2, EF1B, EF1D, EF1G, and valyl-tRNA synthetase (VARS), in NF1-deficient malignant tumor cells. Interestingly, TCTP preferentially binds to EF1A2 (normally found only in neural and skeletal-muscle cells and several cancer cells), rather than EF1A1 despite the high homologies (98%) in their sequences. The docking simulation and further validations to study the interaction between TCTP and EF1A2 revealed that TCTP directly binds with EF1A2 via the contact areas of EF1A2 dimerization. Using unique and common sequences between EF1A2 and EF1A1 in AP-DIA/SWATH, we quantitatively validated the interaction of EF1A2 and TCTP/other elongation factors and found that TCTP coordinates the translational machinery of elongation factors via the association with EF1A2. These data suggest that TCTP activates EF1A2-dependent translation by mediating complex formation with other elongation factors. Inhibiting the TCTP-EF1A2 interaction with EF1A2 siRNAs or a TCTP inhibitor, artesunate, significantly down-regulated the factors related to protein translation and caused dramatic suppression of growth/translation in NF1-associated tumors. Our findings demonstrate that a specific protein translation machinery related to the TCTP-EF1A2 interaction is functionally implicated in the tumorigenesis and progression of NF1-associated tumors and could represent a therapeutic target.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Neurofibromatosis 1/metabolismo , Neurofibrosarcoma/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Proteómica/métodos , Sitios de Unión , Biomarcadores de Tumor/química , Línea Celular Tumoral , Cromatografía de Afinidad , Células HeLa , Humanos , Espectrometría de Masas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Neurofibromatosis 1/genética , Neurofibromina 1/genética , Neurofibrosarcoma/genética , Extensión de la Cadena Peptídica de Translación , Factor 1 de Elongación Peptídica/química , Unión Proteica , Mapas de Interacción de Proteínas , Proteína Tumoral Controlada Traslacionalmente 1
17.
Nat Commun ; 9(1): 2833, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026585

RESUMEN

SP7/Osterix (OSX) is a master regulatory transcription factor that activates a variety of genes during differentiation of osteoblasts. However, the influence of post-translational modifications on the regulation of its transactivation activity is largely unknown. Here, we report that sirtuins, which are NAD(+)-dependent deacylases, regulate lysine deacylation-mediated transactivation of OSX. Germline Sirt7 knockout mice develop severe osteopenia characterized by decreased bone formation and an increase of osteoclasts. Similarly, osteoblast-specific Sirt7 knockout mice showed attenuated bone formation. Interaction of SIRT7 with OSX leads to the activation of transactivation by OSX without altering its protein expression. Deacylation of lysine (K) 368 in the C-terminal region of OSX by SIRT7 promote its N-terminal transactivation activity. In addition, SIRT7-mediated deacylation of K368 also facilitates depropionylation of OSX by SIRT1, thereby increasing OSX transactivation activity. In conclusion, our findings suggest that SIRT7 has a critical role in bone formation by regulating acylation of OSX.


Asunto(s)
Enfermedades Óseas Metabólicas/genética , Lisina/metabolismo , Osteoblastos/metabolismo , Sirtuinas/genética , Factor de Transcripción Sp7/genética , Activación Transcripcional , Acilación , Animales , Densidad Ósea , Enfermedades Óseas Metabólicas/metabolismo , Enfermedades Óseas Metabólicas/patología , Diferenciación Celular , Línea Celular , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Osteogénesis/genética , Transducción de Señal , Sirtuinas/deficiencia , Factor de Transcripción Sp7/metabolismo
18.
Front Mol Biosci ; 4: 77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29230394

RESUMEN

Lysine acetylation is a prevalent post-translational modification in both eukaryotes and prokaryotes. Whereas this modification is known to play pivotal roles in eukaryotes, the function and extent of this modification in prokaryotic cells remain largely unexplored. Here we report the acetylome of a pair of antibiotic-sensitive and -resistant nosocomial pathogen Acinetobacter baumannii SK17-S and SK17-R. A total of 145 lysine acetylation sites on 125 proteins was identified, and there are 23 acetylated proteins found in both strains, including histone-like protein HU which was found to be acetylated at Lys13. HU is a dimeric DNA-binding protein critical for maintaining chromosomal architecture and other DNA-dependent functions. To analyze the effects of site-specific acetylation, homogenously Lys13-acetylated HU protein, HU(K13ac) was prepared by genetic code expansion. Whilst not exerting an obvious effect on the oligomeric state, Lys13 acetylation alters both the thermal stability and DNA binding kinetics of HU. Accordingly, this modification likely destabilizes the chromosome structure and regulates bacterial gene transcription. This work indicates that acetyllysine plays an important role in bacterial epigenetics.

19.
Extremophiles ; 21(2): 283-296, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27928680

RESUMEN

Recent studies have revealed the physiological significance of post-translational lysine acylations such as acetylation in the regulation of various cellular processes. Here, we characterized lysine propionylation, a recently discovered post-translational acylation, in five representative bacteria: Geobacillus kaustophilus, Thermus thermophilus, Escherichia coli, Bacillus subtilis, and Rhodothermus marinus. Using antibody-based propionyl peptide enrichment followed by identification with nano-liquid chromatography tandem mass spectrometry, we showed that proteins were subject to lysine propionylation in all five bacterial species analyzed. Notably, many propionylations were identified in the Bacillus-related, thermophilic eubacterium G. kaustophilus, but fewer in the mesophilic eubacterium B. subtilis, suggesting that propionylation event abundance is independent of phylogenetic relationship. We further found propionylation sites in the thermophilic eubacterium T. thermophilus, but the thermophilic eubacterium R. marinus showed the fewest number of sites, indicating that growth temperature is not a determinant of propionylation state. In silico analyses demonstrated that lysine propionylation is related to metabolic pathways, particularly those controlled by acyl-CoA synthetases, similar to lysine acetylation. We also detected dozens of propionylation sites at positions important for protein functions across bacteria, demonstrating the regulatory mechanisms affected by lysine propionylations. Our proteome-wide analyses across bacteria thus provide insights into the general functions of lysine propionylation.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Geobacillus/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo , Rhodothermus/metabolismo , Thermus thermophilus/metabolismo , Acetilación , Lisina/metabolismo , Propionatos/metabolismo , Proteómica
20.
Biochim Biophys Acta Proteins Proteom ; 1865(2): 232-242, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27888076

RESUMEN

Lysine succinylation, one of post-translational acylations conserved from eukaryotes to bacteria, plays regulatory roles in various cellular processes. However, much remains unknown about the general and specific characteristics of lysine succinylation among bacteria, and about its functions different from those of other acylations. In this study, we characterized lysine succinylation, a newly discovered widespread type of lysine acylation in five bacterial species with different characteristics such as optimal growth temperature and cell wall structure. This study is the first to demonstrate that succinylation is general phenomenon occurring not only in mesophiles but also in thermophiles. Mapping of succinylation sites on protein structures revealed that succinylation occurs at many lysine residues important for protein function. Comparison of the succinylation sites in the five bacterial species provides insights regarding common protein regulation mechanisms utilizing lysine succinylation. Many succinylation sites were conserved among five bacteria, especially between Geobacillus kaustophilus and Bacillus subtilis, some of which are functionally important sites. Furthermore, systematic comparison of the succinyl-proteome results and our previous propionyl-proteome results showed that the abundance of these two types of acylations is considerably different among the five bacteria investigated. Many succinylation and propionylation events were detected in G. kaustophilus, whereas Escherichia coli and B. subtilis exhibited high succinylation and low propionylation; low succinylation and high propionylation were identified in Thermus thermophilus, and low succinylation and propionylation were observed in Rhodothermus marinus. Comparison of the characteristics of lysine succinylation and lysine propionylation suggested these two types of acylation play different roles in cellular processes.


Asunto(s)
Acilación/fisiología , Lisina/metabolismo , Proteoma/metabolismo , Ácido Succínico/metabolismo , Thermus thermophilus/metabolismo , Acetilación , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , Geobacillus/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Rhodothermus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...