Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(40): e2301347, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37309900

RESUMEN

Strong spin-charge interactions in several ferromagnets are expected to lead to subpicosecond (sub-ps) magnetization of the magnetic materials through control of the carrier characteristics via electrical means, which is essential for ultrafast spin-based electronic devices. Thus far, ultrafast control of magnetization has been realized by optically pumping a large number of carriers into the d or f orbitals of a ferromagnet; however, it is extremely challenging to implement by electrical gating. This work demonstrates a new method for sub-ps magnetization manipulation called wavefunction engineering, in which only the spatial distribution (wavefunction) of s (or p) electrons is controlled and no change is required in the total carrier density. Using a ferromagnetic semiconductor (FMS) (In,Fe)As quantum well (QW), instant enhancement, as fast as 600 fs, of the magnetization is observed upon irradiating a femtosecond (fs) laser pulse. Theoretical analysis shows that the instant enhancement of the magnetization is induced when the 2D electron wavefunctions (WFs) in the FMS QW are rapidly moved by a photo-Dember electric field formed by an asymmetric distribution of the photocarriers. Because this WF engineering method can be equivalently implemented by applying a gate electric field, these results open a new way to realize ultrafast magnetic storage and spin-based information processing in present electronic systems.

2.
Nat Commun ; 13(1): 5631, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163469

RESUMEN

The two-dimensional electron gas (2DEG) formed at interfaces between SrTiO3 (STO) and other oxide insulating layers is promising for use in efficient spin-charge conversion due to the large Rashba spin-orbit interaction (RSOI). However, these insulating layers on STO prevent the propagation of a spin current injected from an adjacent ferromagnetic layer. Moreover, the mechanism of the spin-current flow in these insulating layers is still unexplored. Here, using a strongly correlated polar-metal LaTiO3+δ (LTO) interlayer and the 2DEG formed at the LTO/STO interface in an all-epitaxial heterostructure, we demonstrate giant spin-to-charge current conversion efficiencies, up to ~190 nm, using spin-pumping ferromagnetic-resonance voltage measurements. This value is the highest among those reported for all materials, including spin Hall systems. Our results suggest that the strong on-site Coulomb repulsion in LTO and the giant RSOI of LTO/STO may be the key to efficient spin-charge conversion with suppressed spin-flip scattering. Our findings highlight the hidden inherent possibilities of oxide interfaces for spin-orbitronics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...