Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38612448

RESUMEN

The mechanisms of neuronal cell death in neurodegenerative disease remain incompletely understood, although recent studies have made significant advances. Apoptosis was previously considered to be the only mechanism of neuronal cell death in neurodegenerative diseases. However, recent findings have challenged this dogma, identifying new subtypes of necrotic neuronal cell death. The present review provides an updated summary of necrosis subtypes and discusses their potential roles in neurodegenerative cell death. Among numerous necrosis subtypes, including necroptosis, paraptosis, ferroptosis, and pyroptosis, transcriptional repression-induced atypical cell death (TRIAD) has been identified as a potential mechanism of neuronal cell death. TRIAD is induced by functional deficiency of TEAD-YAP and self-amplifies via the release of HMGB1. TRIAD is a feasible potential mechanism of neuronal cell death in Alzheimer's disease and other neurodegenerative diseases. In addition to induction of cell death, HMGB1 released during TRIAD activates brain inflammatory responses, which is a potential link between neurodegeneration and neuroinflammation.


Asunto(s)
Proteína HMGB1 , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neuroinflamatorias , Necrosis , Muerte Celular
2.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594382

RESUMEN

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Animales , Humanos , Ratones , Citocinas , Células Madre Pluripotentes Inducidas/patología , Ratones Transgénicos , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ubiquitinas
3.
Commun Med (Lond) ; 3(1): 170, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017287

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease type 1A (CMT1A) is one of the most common hereditary peripheral neuropathies caused by duplication of 1.5 Mb genome region including PMP22 gene. We aimed to correct the duplication in human CMT1A patient-derived iPS cells (CMT1A-iPSCs) by genome editing and intended to analyze the effect on Schwann cells differentiated from CMT1A-iPSCs. METHODS: We designed multiple gRNAs targeting a unique sequence present at two sites that sandwich only a single copy of duplicated peripheral myelin protein 22 (PMP22) genes, and selected one of them (gRNA3) from screening their efficiencies by T7E1 mismatch detection assay. AAV2-hSaCas9-gRNAedit was generated by subcloning gRNA3 into pX601-AAV-CMV plasmid, and the genome editing AAV vector was infected to CMT1A-iPSCs or CMT1A-iPSC-derived Schwann cell precursors. The effect of the genome editing AAV vector on myelination was evaluated by co-immunostaining of myelin basic protein (MBP), a marker of mature myelin, and microtubule-associated protein  2(MAP2), a marker of neurites or by electron microscopy. RESULTS: Here we show that infection of CMT1A-iPS cells (iPSCs) with AAV2-hSaCas9-gRNAedit expressing both hSaCas9 and gRNA targeting the tandem repeat sequence decreased PMP22 gene duplication by 20-40%. Infection of CMT1A-iPSC-derived Schwann cell precursors with AAV2-hSaCas9-gRNAedit normalized PMP22 mRNA and PMP22 protein expression levels, and also ameliorated increased apoptosis and impaired myelination in CMT1A-iPSC-derived Schwann cells. CONCLUSIONS: In vivo transfer of AAV2-hSaCas9-gRNAedit to peripheral nerves could be a potential therapeutic modality for CMT1A patient after careful examinations of toxicity including off-target mutations.


Charcot-Marie-Tooth disease type 1A (CMT1A) is a common heritable form of the condition that develops when nerves in the body's extremities, such as the hands, feet and arms, are damaged due to an extra copy of PMP22 gene being incorrectly produced. Currently, no known therapies exist. Here, we developed a method to delete the additional copy of PMP22 gene by 20­40% to prevent overproduction. Our results show that this method can reduce PMP22 protein production, leading to near normal production in patient's nerve cells. Further safety assessments should now be undertaken. If the treatment is safe for patients it could become a therapeutic option for CMT1A patients.

4.
Cell ; 186(22): 4898-4919.e25, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37827155

RESUMEN

Expansions of repeat DNA tracts cause >70 diseases, and ongoing expansions in brains exacerbate disease. During expansion mutations, single-stranded DNAs (ssDNAs) form slipped-DNAs. We find the ssDNA-binding complexes canonical replication protein A (RPA1, RPA2, and RPA3) and Alternative-RPA (RPA1, RPA3, and primate-specific RPA4) are upregulated in Huntington disease and spinocerebellar ataxia type 1 (SCA1) patient brains. Protein interactomes of RPA and Alt-RPA reveal unique and shared partners, including modifiers of CAG instability and disease presentation. RPA enhances in vitro melting, FAN1 excision, and repair of slipped-CAGs and protects against CAG expansions in human cells. RPA overexpression in SCA1 mouse brains ablates expansions, coincident with decreased ATXN1 aggregation, reduced brain DNA damage, improved neuron morphology, and rescued motor phenotypes. In contrast, Alt-RPA inhibits melting, FAN1 excision, and repair of slipped-CAGs and promotes CAG expansions. These findings suggest a functional interplay between the two RPAs where Alt-RPA may antagonistically offset RPA's suppression of disease-associated repeat expansions, which may extend to other DNA processes.


Asunto(s)
Proteína de Replicación A , Expansión de Repetición de Trinucleótido , Animales , Humanos , Ratones , ADN/genética , Reparación de la Incompatibilidad de ADN , Enfermedad de Huntington/genética , Proteínas/genética , Ataxias Espinocerebelosas/genética , Proteína de Replicación A/metabolismo
5.
Cell Rep ; 42(8): 112962, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37591248

RESUMEN

Prion-like protein propagation is considered a common pathogenic mechanism in neurodegenerative diseases. Here we investigate the in vivo propagation pattern and aggregation state of mutant α-synuclein by injecting adeno-associated viral (AAV)-α-synuclein-A53T-EGFP into the mouse olfactory cortex. Comparison of aggregation states in various brain regions at multiple time points after injection using western blot analyses shows that the monomeric state of the mutant/misfolded protein propagates to remote brain regions by 2 weeks and that the propagated proteins aggregate in situ after being incorporated into neurons. Moreover, injection of Alexa 488-labeled α-synuclein-A53T confirms the monomeric propagation at 2 weeks. Super-resolution microscopy shows that both α-synuclein-A53T proteins propagate via the lymphatic system, penetrate perineuronal nets, and reach the surface of neurons. Electron microscopy shows that the propagated mutant/misfolded monomer forms fibrils characteristic of Parkinson's disease after its incorporation into neurons. These findings suggest a mode of propagation different from that of aggregate-dependent propagation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/genética , Encéfalo , Sistema Linfático , Western Blotting , Proteínas Mutantes
6.
Brain Behav Immun ; 111: 32-45, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37004758

RESUMEN

The molecular pathological mechanisms underlying schizophrenia remain unclear; however, genomic analysis has identified genes encoding important risk molecules. One such molecule is neurexin 1α (NRXN1α), a presynaptic cell adhesion molecule. In addition, novel autoantibodies that target the nervous system have been found in patients with encephalitis and neurological disorders. Some of these autoantibodies inhibit synaptic antigen molecules. Studies have examined the association between schizophrenia and autoimmunity; however, the pathological data remain unclear. Here, we identified a novel autoantibody against NRXN1α in patients with schizophrenia (n = 2.1%) in a Japanese cohort (n = 387). None of the healthy control participants (n = 362) were positive for anti-NRXN1α autoantibodies. Anti-NRXN1α autoantibodies isolated from patients with schizophrenia inhibited the molecular interaction between NRXN1α and Neuroligin 1 (NLGN1) and between NRXN1α and Neuroligin 2 (NLGN2). Additionally, these autoantibodies reduced the frequency of the miniature excitatory postsynaptic current in the frontal cortex of mice. Administration of anti-NRXN1α autoantibodies from patients with schizophrenia into the cerebrospinal fluid of mice reduced the number of spines/synapses in the frontal cortex and induced schizophrenia-related behaviors such as reduced cognition, impaired pre-pulse inhibition, and reduced social novelty preference. These changes were improved through the removal of anti-NRXN1α autoantibodies from the IgG fraction of patients with schizophrenia. These findings demonstrate that anti-NRXN1α autoantibodies transferred from patients with schizophrenia cause schizophrenia-related pathology in mice. Removal of anti-NRXN1α autoantibodies may be a therapeutic target for a subgroup of patients who are positive for these autoantibodies.


Asunto(s)
Esquizofrenia , Ratones , Animales , Esquizofrenia/genética , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Autoanticuerpos/metabolismo , Fenotipo
7.
Nat Commun ; 14(1): 9, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599853

RESUMEN

Polyglutamine binding protein 5 (PQBP5), also called nucleolar protein 10 (NOL10), binds to polyglutamine tract sequences and is expressed in the nucleolus. Using dynamic imaging of high-speed atomic force microscopy, we show that PQBP5/NOL10 is an intrinsically disordered protein. Super-resolution microscopy and correlative light and electron microscopy method show that PQBP5/NOL10 makes up the skeletal structure of the nucleolus, constituting the granule meshwork in the granular component area, which is distinct from other nucleolar substructures, such as the fibrillar center and dense fibrillar component. In contrast to other nucleolar proteins, which disperse to the nucleoplasm under osmotic stress conditions, PQBP5/NOL10 remains in the nucleolus and functions as an anchor for reassembly of other nucleolar proteins. Droplet and thermal shift assays show that the biophysical features of PQBP5/NOL10 remain stable under stress conditions, explaining the spatial role of this protein. PQBP5/NOL10 can be functionally depleted by sequestration with polyglutamine disease proteins in vitro and in vivo, leading to the pathological deformity or disappearance of the nucleolus. Taken together, these findings indicate that PQBP5/NOL10 is an essential protein needed to maintain the structure of the nucleolus.


Asunto(s)
Nucléolo Celular , Núcleo Celular , Proteínas Nucleares , Humanos , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Presión Osmótica/fisiología
8.
Rinsho Shinkeigaku ; 62(6): 429-442, 2022 Jun 24.
Artículo en Japonés | MEDLINE | ID: mdl-35644579

RESUMEN

The Japanese Society of Neurology discusses research, education, and medical care in the field of neurology and makes recommendations to the national government. Dr. Mizusawa, the former representative director of the Japanese Society of Neurology, selected committee members and made "Recommendations for Promotion of Research for Overcoming Neurological Diseases" in 2013. After that, the Future Vision Committee was established in 2014, and these recommendations have been revised once every few years by the committee. This time, the Future Vision Committee made the latest recommendations from 2020 to 2021. In this section I, we will discuss clinical and research topics of neurology categorized by the methodology, including genetic research, translational research, nucleic acid therapies, iPS research, and nursing/welfare.


Asunto(s)
Enfermedades del Sistema Nervioso , Neurología , Humanos , Enfermedades del Sistema Nervioso/terapia , Sociedades Médicas
9.
Rinsho Shinkeigaku ; 62(6): 443-457, 2022 Jun 24.
Artículo en Japonés | MEDLINE | ID: mdl-35644580

RESUMEN

The Japanese Society of Neurology discusses research, education, and medical care in the field of neurology and makes recommendations to the national government. Dr. Mizusawa, the former representative director of the Japanese Society of Neurology, selected committee members and made "Recommendations for Promotion of Research for Overcoming Neurological Diseases" in 2013. After that, the Future Vision Committee was established in 2014, and these recommendations have been revised once every few years by the committee. This time, the Future Vision Committee made the latest recommendations from 2020 to 2021. In this section II, we will discuss clinical and research topics of neurology categorized by the diseases. In each field, the hot topic of the disease was described by the expert.


Asunto(s)
Enfermedades del Sistema Nervioso , Neurología , Humanos , Enfermedades del Sistema Nervioso/terapia , Sociedades Médicas
10.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682906

RESUMEN

The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.


Asunto(s)
Discapacidad Intelectual , Enfermedades Neurodegenerativas , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata , Discapacidad Intelectual/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/genética
11.
Cell Rep Med ; 3(4): 100597, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35492247

RESUMEN

From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia.


Asunto(s)
Moléculas de Adhesión de Célula Nerviosa , Esquizofrenia , Autoanticuerpos , Antígeno CD56/genética , Humanos , Moléculas de Adhesión de Célula Nerviosa/genética , Esquizofrenia/genética , Sinapsis/metabolismo
12.
Brain Nerve ; 74(1): 59-62, 2022 Jan.
Artículo en Japonés | MEDLINE | ID: mdl-34992175

RESUMEN

Here, I present my career as a case study for young researchers and clinicians to consider their futures. I outline a number of possibilities, the most important of which are the originality and creativity of research and passion to overcome the difficulties experienced when generating a new path.


Asunto(s)
Medicina Clínica , Liderazgo , Creatividad , Emociones , Humanos , Investigadores
13.
Nat Commun ; 12(1): 6565, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782623

RESUMEN

Brain inflammation generally accompanies and accelerates neurodegeneration. Here we report a microglial mechanism in which polyglutamine binding protein 1 (PQBP1) senses extrinsic tau 3R/4R proteins by direct interaction and triggers an innate immune response by activating a cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) pathway. Tamoxifen-inducible and microglia-specific depletion of PQBP1 in primary culture in vitro and mouse brain in vivo shows that PQBP1 is essential for sensing-tau to induce nuclear translocation of nuclear factor κB (NFκB), NFκB-dependent transcription of inflammation genes, brain inflammation in vivo, and eventually mouse cognitive impairment. Collectively, PQBP1 is an intracellular receptor in the cGAS-STING pathway not only for cDNA of human immunodeficiency virus (HIV) but also for the transmissible neurodegenerative disease protein tau. This study characterises a mechanism of brain inflammation that is common to virus infection and neurodegenerative disorders.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Encefalitis/metabolismo , Proteínas de la Membrana/metabolismo , Microglía/metabolismo , Nucleotidiltransferasas/metabolismo , Animales , Encéfalo , Proteínas de Unión al ADN/genética , Encefalitis/inmunología , Femenino , VIH , Humanos , Inmunidad Innata , Masculino , Glicoproteínas de Membrana , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , FN-kappa B/metabolismo , Enfermedades Neurodegenerativas , Nucleotidiltransferasas/genética , Tamoxifeno/farmacología
14.
Rinsho Shinkeigaku ; 61(11): 709-721, 2021 Nov 24.
Artículo en Japonés | MEDLINE | ID: mdl-34657923

RESUMEN

The Japanese Society of Neurology discusses research, education, and medical care in the field of neurology and makes recommendations to the national government. Dr. Mizusawa, the former representative director of the Japanese Society of Neurology, selected committee members and made "Recommendations for Promotion of Research for Overcoming Neurological Diseases" in 2013. After that, the Future Vision Committee was established in 2014, and these recommendations have been revised once every few years by the committee. This time, the Future Vision Committee made the latest recommendations from 2020 to 2021. In this document, the general part is 1) What is neurological disease? 2) Current status of neurological disease overcoming research, 3) Significance and necessity of neurological disease overcoming research, 4) Research promotion system for overcoming neurological disease, 5) the roadmap for overcoming neuromuscular diseases, 6) a summary version of these recommendations are explained using figures that are easy for the general public to understand.


Asunto(s)
Neurología , Sociedades Médicas
15.
Commun Biol ; 4(1): 1175, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635772

RESUMEN

DNA damage is increased in Alzheimer's disease (AD), while the underlying mechanisms are unknown. Here, we employ comprehensive phosphoproteome analysis, and identify abnormal phosphorylation of 70 kDa subunit of Ku antigen (Ku70) at Ser77/78, which prevents Ku70-DNA interaction, in human AD postmortem brains. The abnormal phosphorylation inhibits accumulation of Ku70 to the foci of DNA double strand break (DSB), impairs DNA damage repair and eventually causes transcriptional repression-induced atypical cell death (TRIAD). Cells under TRIAD necrosis reveal senescence phenotypes. Extracellular high mobility group box 1 (HMGB1) protein, which is released from necrotic or hyper-activated neurons in AD, binds to toll-like receptor 4 (TLR4) of neighboring neurons, and activates protein kinase C alpha (PKCα) that executes Ku70 phosphorylation at Ser77/78. Administration of human monoclonal anti-HMGB1 antibody to post-symptomatic AD model mice decreases neuronal DSBs, suppresses secondary TRIAD necrosis of neurons, prevents escalation of neurodegeneration, and ameliorates cognitive symptoms. TRIAD shares multiple features with senescence. These results discover the HMGB1-Ku70 axis that accounts for the increase of neuronal DNA damage and secondary enhancement of TRIAD, the cell death phenotype of senescence, in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Daño del ADN , Reparación del ADN , Proteína HMGB1/fisiología , Autoantígeno Ku/metabolismo , Transducción de Señal/genética , Animales , Proteína HMGB1/genética , Ratones , Ratones Transgénicos , Fosforilación
16.
Commun Biol ; 4(1): 961, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385591

RESUMEN

Multiple gene mutations cause familial frontotemporal lobar degeneration (FTLD) while no single gene mutations exists in sporadic FTLD. Various proteins aggregate in variable regions of the brain, leading to multiple pathological and clinical prototypes. The heterogeneity of FTLD could be one of the reasons preventing development of disease-modifying therapy. We newly develop a mathematical method to analyze chronological changes of PPI networks with sequential big data from comprehensive phosphoproteome of four FTLD knock-in (KI) mouse models (PGRNR504X-KI, TDP43N267S-KI, VCPT262A-KI and CHMP2BQ165X-KI mice) together with four transgenic mouse models of Alzheimer's disease (AD) and with APPKM670/671NL-KI mice at multiple time points. The new method reveals the common core pathological network across FTLD and AD, which is shared by mouse models and human postmortem brains. Based on the prediction, we performed therapeutic intervention of the FTLD models, and confirmed amelioration of pathologies and symptoms of four FTLD mouse models by interruption of the core molecule HMGB1, verifying the new mathematical method to predict dynamic molecular networks.


Asunto(s)
Enfermedad de Alzheimer/etiología , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/etiología , Enfermedad de Alzheimer/patología , Animales , Degeneración Lobar Frontotemporal/patología , Humanos , Ratones , Ratones Transgénicos , Modelos Teóricos
17.
ACS Chem Neurosci ; 12(16): 3015-3027, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34319089

RESUMEN

Tau aggregation is a central hallmark of tauopathies such as frontotemporal lobar degeneration and progressive supranuclear palsy as well as of Alzheimer's disease, and it has been a target for therapeutic development. Herein, we unexpectedly found that hepta-histidine (7H), an inhibitor of the interaction between Ku70 and Huntingtin proteins, suppresses aggregation of Tau-R3 peptides in vitro. Addition of the trans-activator of transcription (TAT) sequence (YGRKKRRQRRR) derived from the TAT protein to 7H increased its permeability into cells, and TAT-7H treatment of iPS cell-derived neurons carrying Tau or APP mutations suppressed Tau phosphorylation. These results indicate that 7H is a promising lead compound for developing anti-aggregation drugs against Tau-related neurodegenerative diseases including Alzheimer's disease (AD).


Asunto(s)
Enfermedad de Alzheimer , Degeneración Lobar Frontotemporal , Tauopatías , Enfermedad de Alzheimer/tratamiento farmacológico , Histidina , Humanos , Proteínas tau
18.
Life Sci Alliance ; 4(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34130995

RESUMEN

The early-stage pathologies of frontotemporal lobal degeneration (FTLD) remain largely unknown. In VCPT262A-KI mice carrying VCP gene mutation linked to FTLD, insufficient DNA damage repair in neural stem/progenitor cells (NSCs) activated DNA-PK and CDK1 that disabled MCM3 essential for the G1/S cell cycle transition. Abnormal neural exit produced neurons carrying over unrepaired DNA damage and induced early-stage transcriptional repression-induced atypical cell death (TRIAD) necrosis accompanied by the specific markers pSer46-MARCKS and YAP. In utero gene therapy expressing normal VCP or non-phosphorylated mutant MCM3 rescued DNA damage, neuronal necrosis, cognitive function, and TDP43 aggregation in adult neurons of VCPT262A-KI mice, whereas similar therapy in adulthood was less effective. The similar early-stage neuronal necrosis was detected in PGRNR504X-KI, CHMP2BQ165X-KI, and TDPN267S-KI mice, and blocked by embryonic treatment with AAV-non-phospho-MCM3. Moreover, YAP-dependent necrosis occurred in neurons of human FTLD patients, and consistently pSer46-MARCKS was increased in cerebrospinal fluid (CSF) and serum of these patients. Collectively, developmental stress followed by early-stage neuronal necrosis is a potential target for therapeutics and one of the earliest general biomarkers for FTLD.


Asunto(s)
Degeneración Lobar Frontotemporal/patología , Células-Madre Neurales/metabolismo , Proteína que Contiene Valosina/metabolismo , Animales , Ciclo Celular , Linaje de la Célula/genética , Células Cultivadas , Daño del ADN/genética , Daño del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/líquido cefalorraquídeo , Degeneración Lobar Frontotemporal/genética , Expresión Génica/genética , Regulación de la Expresión Génica/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Necrosis/metabolismo , Necrosis/patología , Células-Madre Neurales/patología , Neuronas/metabolismo , Proteína que Contiene Valosina/genética
19.
Neuropathology ; 41(2): 93-98, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33876503

RESUMEN

Using a new marker of necrosis, pSer46-MARCKS, which was identified by comprehensive phosphoproteome analysis as a phosphoprotein changed before appearance of extracellular amyloid aggregation, we discovered that neuronal necrosis occurs much earlier in Alzheimer's disease pathology than previously expected. The necrosis is induced by intracellular amyloid accumulation that deprives a critical effector molecule, Yes-associated protein (YAP), in the Hippo signaling pathway that is essential for cell survival, similarly to TRIAD necrosis observed in transcriptional repression and in other neurodegenerative diseases such as Huntington's disease. The initial TRIAD necrosis due to the intracellular amyloid releases HMGB1 into extracellular space and induces cluster of secondary necrosis around the primary necrotic neurons. Finally, the cluster grows into extracellular amyloid plaque. Inhibition of HMGB1 by anti-HMGB1 antibody prevents expansion of neurodegeneration. Administration even after onset significantly ameliorates the cognitive decline of Alzheimer's disease model mice. Our results present a new theory of Alzheimer's disease pathology, which can be referred to as the "intracellular amyloid hypothesis".


Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/fisiopatología , Placa Amiloide/patología , Enfermedad de Alzheimer/metabolismo , Animales , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Humanos , Neuronas/patología , Placa Amiloide/metabolismo
20.
Genes Genet Syst ; 95(6): 303-314, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33583916

RESUMEN

yata mutants of Drosophila melanogaster exhibit phenotypes including progressive brain shrinkage, developmental abnormalities and shortened lifespan, whereas in mammals, null mutations of the yata ortholog Scyl1 result in motor neuron degeneration. yata mutation also causes defects in the anterograde intracellular trafficking of a subset of proteins including APPL, which is the Drosophila ortholog of mammalian APP, a causative molecule in Alzheimer's disease. SCYL1 binds and regulates the function of coat protein complex I (COPI) in secretory vesicles. Here, we reveal a role for the Drosophila YATA protein in the proper localization of COPI. Immunohistochemical analyses performed using confocal microscopy and structured illumination microscopy showed that YATA colocalizes with COPI and GM130, a cis-Golgi marker. Analyses using transgenically expressed YATA with a modified N-terminal sequence revealed that the N-terminal portion of YATA is required for the proper subcellular localization of YATA. Analysis using transgenically expressed YATA proteins in which the C-terminal sequence was modified revealed a function for the C-terminal portion of YATA in the subcellular localization of COPI. Notably, when YATA was mislocalized, it also caused the mislocalization of COPI, indicating that YATA plays a role in directing COPI to the proper subcellular site. Moreover, when both YATA and COPI were mislocalized, the staining pattern of GM130 revealed Golgi with abnormal elongated shapes. Thus, our in vivo data indicate that YATA plays a role in the proper subcellular localization of COPI.


Asunto(s)
Proteína Coat de Complejo I/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Quinasas/metabolismo , Animales , Sitios de Unión , Proteína Coat de Complejo I/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Aparato de Golgi/metabolismo , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Señales de Clasificación de Proteína , Transporte de Proteínas , Vesículas Secretoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...