Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Placenta ; 82: 25-34, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31174623

RESUMEN

INTRODUCTION: Mesenchymal stem cells from Wharton's Jelly of a human umbilical cord (WJ-MSCs) are a potential tool in regenerative medicine based on their availability, proliferative potential and differentiation capacity. Since their physiological niche contains low oxygen levels, we investigated whether cultivation of WJ-MSCs at 3% O2 affects their main features. METHODS: WJ-MSCs were cultured under 21% and 3% O2. Proliferation rate was followed by short and long term proliferation assays, clonogenic capacity by CFU-F assay and cell cycle and death by flow cytometry. Differentiation capacity was investigated by histochemical staining after induced differentiation. Pluripotency and differentiation markers' expression was determined by RT-PCR. Migration capacity was followed by scratch assay and mobilization from collagen, and the activity of proteolytic enzymes by zymography. Specific inhibitors of MAPK and Wnt/ß-catenin pathways were used to investigate underlying molecular mechanisms. RESULTS: Compared to standard 21% O2, cultivation of WJ-MSCs at 3% O2 did not influence their immunophenotype, while it modulated their differentiation process and enhanced their clonogenic and expansion capacity. 3% O2 induced transient change in cell cycle and prevented cell death. The expression of NANOG, OCT4A, OCT4B and SOX2 was increased at 3% O2. Both cultivation and preculturing of WJ-MSCs at 3% O2 increased their in vitro migratory capacity and enhanced the activity of proteolytic enzymes. ERK1/2 mediated WJ-MSCs' mobilization from collagen regardless of oxygen levels, while Wnt/ß-catenin pathway was activated during migration and mobilization at standard conditions. CONCLUSION: Culturing of WJ-MSCs under 3% O2 should be considered a credible condition when investigating their properties and potential use.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Mesenquimatosas/citología , Nicho de Células Madre/fisiología , Cordón Umbilical/citología , Gelatina de Wharton/citología , Hipoxia de la Célula/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Oxígeno/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA