Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892204

RESUMEN

Winter plants acclimate to frost mainly during the autumn months, through the process of cold acclimation. Global climate change is causing changes in weather patterns such as the occurrence of warmer periods during late autumn or in winter. An increase in temperature after cold acclimation can decrease frost tolerance, which is particularly dangerous for winter crops. The aim of this study was to investigate the role of brassinosteroids (BRs) and BR analogues as protective agents against the negative results of deacclimation. Plants were cold-acclimated (3 weeks, 4 °C) and deacclimated (1 week, 16/9 °C d/n). Deacclimation generally reversed the cold-induced changes in the level of the putative brassinosteroid receptor protein (BRI1), the expression of BR-induced COR, and the expression of SERK1, which is involved in BR signal transduction. The deacclimation-induced decrease in frost tolerance in oilseed rape could to some extent be limited by applying steroid regulators. The deacclimation in plants could be detected using non-invasive measurements such as leaf reflectance, chlorophyll a fluorescence, and gas exchange monitoring.


Asunto(s)
Aclimatación , Brassica napus , Brasinoesteroides , Frío , Regulación de la Expresión Génica de las Plantas , Brasinoesteroides/metabolismo , Brassica napus/fisiología , Brassica napus/metabolismo , Estaciones del Año , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
3.
ACS Chem Neurosci ; 15(10): 1990-2005, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38655788

RESUMEN

Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 µL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 µmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Neuroesteroides/sangre , Esteroides/sangre , Esteroides/análisis , Masculino , Reproducibilidad de los Resultados
4.
Plant Cell Physiol ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619131

RESUMEN

Brassinosteroids (BRs) are plant steroidal hormones that play crucial roles in plant growth and development. Accurate quantification of BRs in plant tissues is essential for understanding their biological functions. This study presents a comprehensive overview of the latest methods used for the quantification of BRs in plants. We discuss the principles, advantages, and limitations of various analytical techniques, including immunoassays, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS) that are used for the detection and quantification of BRs from complex plant matrices. We also explore the use of isotopically labeled internal standards to improve the accuracy and reliability of BR quantification.

5.
Plant Cell Physiol ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37847120

RESUMEN

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

6.
J Steroid Biochem Mol Biol ; 233: 106365, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37468002

RESUMEN

Estrogen receptor alpha (ER) is a key biomarker for breast cancer, and the presence or absence of ER in breast and other hormone-dependent cancers decides treatment regimens and patient prognosis. ER is activated after ligand binding - typically by steroid. 2682 steroid compounds were used in a molecular docking study to identify novel ligands for ER and to predict compounds that may show anticancer activity. The effect of the most promising compounds was determined by a novel luciferase reporter assay. Two compounds, 7 and 12, showing ER inhibitory activity comparable to clinical inhibitors such as tamoxifen or fulvestrant were selected. We propose that the inhibitory effect of compounds 7 and 12 on ER is related to the presence of a double bond in their D-ring, which may protect against ER activation by reducing the electron density of the keto group, or may undergo metabolism leading to an active compound. Western blotting revealed that compound 12 decreased the level of ER in the breast cancer cell line MCF7, which was associated with reduced expression of both isoforms of the progesterone receptor, a well-known downstream target of ER. However, compound 12 has a different mechanism of action from fulvestrant. Furthermore, we found that compound 12 interferes with mitochondrial functions, probably by disrupting the electron transport chain, leading to induction of the intrinsic apoptotic pathway even in ER-negative breast cancer cells. In conclusion, the combination of computational and experimental methods shown here represents a rapid approach to determine the activity of compounds towards ER. Our data will not only contribute to research focused on the regulation of ER activity but may also be useful for the further development of novel steroid receptor-targeted drugs applicable in clinical practice.


Asunto(s)
Neoplasias de la Mama , Estrona , Humanos , Femenino , Fulvestrant/farmacología , Fulvestrant/uso terapéutico , Estrona/farmacología , Receptores de Estrógenos/metabolismo , Simulación del Acoplamiento Molecular , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Tamoxifeno/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estradiol/farmacología , Estradiol/uso terapéutico
7.
Front Nutr ; 10: 1112793, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215221

RESUMEN

Dioscorea is an important but underutilized genus of flowering plants that grows predominantly in tropical and subtropical regions. Several species, known as yam, develop large underground tubers and aerial bulbils that are used as food. The Chinese yam (D. polystachya Turcz.) is one of the few Dioscorea species that grows well in temperate regions and has been proposed as a climate-resilient crop to enhance food security in Europe. However, the fragile, club-like tubers are unsuitable for mechanical harvesting, which is facilitated by shorter and thicker storage organs. Brassinosteroids (BRs) play a key role in plant cell division, cell elongation and proliferation, as well as in the gravitropic response. We collected RNA-Seq data from the head, middle and tip of two tuber shape variants: F60 (long, thin) and F2000 (short, thick). Comparative transcriptome analysis of F60 vs. F2000 revealed 30,229 differentially expressed genes (DEGs), 1,393 of which were differentially expressed in the growing tip. Several DEGs are involved in steroid/BR biosynthesis or signaling, or may be regulated by BRs. The quantification of endogenous BRs revealed higher levels of castasterone (CS), 28-norCS, 28-homoCS and brassinolide in F2000 compared to F60 tubers. The highest BR levels were detected in the growing tip, and CS was the most abundant (439.6 ± 196.41 pmol/g in F2000 and 365.6 ± 112.78 pmol/g in F60). Exogenous 24-epi-brassinolide (epi-BL) treatment (20 nM) in an aeroponic system significantly increased the width-to-length ratio (0.045 ± 0.002) compared to the mock-treated plants (0.03 ± 0.002) after 7 weeks, indicating that exogenous epi-BL produces shorter and thicker tubers. In this study we demonstrate the role of BRs in D. polystachya tuber shape, providing insight into the role of plant hormones in yam storage organ development. We found that BRs can influence tuber shape in Chinese yam by regulating the expression of genes involved cell expansion. Our data can help to improve the efficiency of Chinese yam cultivation, which could provide an alternative food source and thus contribute to future food security in Europe.

8.
Int J Mol Sci ; 23(9)2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35563614

RESUMEN

The objective of this study was to answer the question of how the deacclimation process affects frost tolerance, photosynthetic efficiency, brassinosteroid (BR) homeostasis and BRI1 expression of winter oilseed rape. A comparative study was conducted on cultivars with different agronomic and physiological traits. The deacclimation process can occur when there are periods of higher temperatures, particularly in the late autumn or winter. This interrupts the process of the acclimation (hardening) of winter crops to low temperatures, thus reducing their frost tolerance and becoming a serious problem for agriculture. The experimental model included plants that were non-acclimated, cold acclimated (at 4 °C) and deacclimated (at 16 °C/9 °C, one week). We found that deacclimation tolerance (maintaining a high frost tolerance despite warm deacclimating periods) was a cultivar-dependent trait. Some of the cultivars developed a high frost tolerance after cold acclimation and maintained it after deacclimation. However, there were also cultivars that had a high frost tolerance after cold acclimation but lost some of it after deacclimation (the cultivars that were more susceptible to deacclimation). Deacclimation reversed the changes in the photosystem efficiency that had been induced by cold acclimation, and therefore, measuring the different signals associated with photosynthetic efficiency (based on prompt and delayed chlorophyll fluorescence) of plants could be a sensitive tool for monitoring the deacclimation process (and possible changes in frost tolerance) in oilseed rape. Higher levels of BR were characteristic of the better frost-tolerant cultivars in both the cold-acclimated and deacclimated plants. The relative expression of the BRI1 transcript (encoding the BR-receptor protein) was lower after cold acclimation and remained low in the more frost-tolerant cultivars after deacclimation. The role of brassinosteroids in oilseed rape acclimation/deacclimation is briefly discussed.


Asunto(s)
Brassica napus , Aclimatación/fisiología , Brassica napus/genética , Brasinoesteroides , Frío , Homeostasis , Fotosíntesis
9.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35163750

RESUMEN

Agronomic breeding practices for grapevines (Vitis vinifera L.) include the application of growth regulators in the field. Brassinosteroids (BRs) are a family of sterol-derived plant hormones that regulate several physiological processes and responses to biotic and abiotic stress. In grapevine berries, the production of biologically active BRs, castasterone and 6-deoxocastasterone, has been reported. In this work, key BR genes were identified, and their expression profiles were determined in grapevine. Bioinformatic homology analyses of the Arabidopsis genome found 14 genes associated with biosynthetic, perception and signaling pathways, suggesting a partial conservation of these pathways between the two species. The tissue- and development-specific expression profiles of these genes were determined by qRT-PCR in nine different grapevine tissues. Using UHPLC-MS/MS, 10 different BR compounds were pinpointed and quantified in 20 different tissues, each presenting specific accumulation patterns. Although, in general, the expression profile of the biosynthesis pathway genes of BRs did not directly correlate with the accumulation of metabolites, this could reflect the complexity of the BR biosynthesis pathway and its regulation. The development of this work thus generates a contribution to our knowledge about the presence, and diversity of BRs in grapevines.


Asunto(s)
Arabidopsis , Brasinoesteroides , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Espectrometría de Masas en Tándem
10.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046016

RESUMEN

Mitochondrial adrenodoxins (ADXs) are small iron-sulfur proteins with electron transfer properties. In animals, ADXs transfer electrons between an adrenodoxin reductase (ADXR) and mitochondrial P450s, which is crucial for steroidogenesis. Here we show that a plant mitochondrial steroidogenic pathway, dependent on an ADXR-ADX-P450 shuttle, is essential for female gametogenesis and early embryogenesis through a maternal effect. The steroid profile of maternal and gametophytic tissues of wild-type (WT) and adxr ovules revealed that homocastasterone is the main steroid present in WT gametophytes and that its levels are reduced in the mutant ovules. The application of exogenous homocastasterone partially rescued adxr and P450 mutant phenotypes, indicating that gametophytic homocastasterone biosynthesis is affected in the mutants and that a deficiency of this hormone causes the phenotypic alterations observed. These findings also suggest not only a remarkable similarity between steroid biosynthetic pathways in plants and animals but also a common function during sexual reproduction.


Asunto(s)
Adrenodoxina/metabolismo , Arabidopsis/embriología , Ferredoxina-NADP Reductasa/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/fisiología , Transporte de Electrón , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/fisiología , Desarrollo Embrionario/genética , Gametogénesis/fisiología , Células Germinativas de las Plantas/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fitosteroles/biosíntesis , Unión Proteica
11.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768948

RESUMEN

The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 µmol m-2 s-1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and ß-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.


Asunto(s)
Fotosíntesis , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efectos de la radiación , Brasinoesteroides/metabolismo , Clorofila/metabolismo , Ácidos Indolacéticos/metabolismo , Luz , Solanum lycopersicum/crecimiento & desarrollo , Metaboloma , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de la radiación , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/efectos de la radiación , Espectrometría Raman
12.
Nat Plants ; 7(5): 619-632, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34007032

RESUMEN

Brassinosteroid (BR) hormones are indispensable for root growth and control both cell division and cell elongation through the establishment of an increasing signalling gradient along the longitudinal root axis. Because of their limited mobility, the importance of BR distribution in achieving a signalling maximum is largely overlooked. Expression pattern analysis of all known BR biosynthetic enzymes revealed that not all cells in the Arabidopsis thaliana root possess full biosynthetic machinery, and that completion of biosynthesis relies on cell-to-cell movement of hormone precursors. We demonstrate that BR biosynthesis is largely restricted to the root elongation zone, where it overlaps with BR signalling maxima. Moreover, optimal root growth requires hormone concentrations to be low in the meristem and high in the root elongation zone, attributable to increased biosynthesis. Our finding that spatiotemporal regulation of hormone synthesis results in local hormone accumulation provides a paradigm for hormone-driven organ growth in the absence of long-distance hormone transport in plants.


Asunto(s)
Brasinoesteroides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Brasinoesteroides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/metabolismo
13.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799719

RESUMEN

Ecdysteroids (ECs) are steroid hormones originally found in the animal kingdom where they function as insect molting hormones. Interestingly, a relatively high number of these substances can also be formed in plant cells. Moreover, ECs have certain regulatory effects on plant physiology, but their role in plants still requires further study. One of the main aims of the present study was to verify a hypothesis that fenarimol, an inhibitor of the biosynthesis of ECs in the animal kingdom, also affects the content of endogenous ECs in plants using winter wheat Triticum aestivum L. as a model plant. The levels of endogenous ECs in winter wheat, including the estimation of their changes during a course of different temperature treatments, have been determined using a sensitive analytical method based on UHPLC-MS/MS. Under our experimental conditions, four substances of EC character were detected in the tissue of interest in amounts ranging from less than 1 to over 200 pg·g-1 FW: 20-hydroxyecdysone, polypodine B, turkesterone, and isovitexirone. Among them, turkesterone was observed to be the most abundant EC and accumulated mainly in the crowns and leaves of wheat. Importantly, the level of ECs was observed to be dependent on the age of the plants, as well as on growth conditions (especially temperature). Fenarimol, an inhibitor of a cytochrome P450 monooxygenase, was shown to significantly decrease the level of naturally occurring ECs in experimental plants, which may indicate its potential use in studies related to the biosynthesis and physiological function of these substances in plants.


Asunto(s)
Productos Biológicos/metabolismo , Ecdisteroides/biosíntesis , Pirimidinas/farmacología , Triticum/metabolismo , Productos Biológicos/química , Cromatografía Liquida/métodos , Ecdisteroides/química , Fungicidas Industriales/farmacología , Estructura Molecular , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Espectrometría de Masas en Tándem/métodos , Temperatura , Triticum/crecimiento & desarrollo
14.
Biomolecules ; 11(4)2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918915

RESUMEN

Neuroactive steroids are a family of all steroid-based compounds, of both natural and synthetic origin, which can affect the nervous system functions. Their biosynthesis occurs directly in the nervous system (so-called neurosteroids) or in peripheral endocrine tissues (hormonal steroids). Steroid hormone levels may fluctuate due to physiological changes during life and various pathological conditions affecting individuals. A deeper understanding of neuroactive steroids' production, in addition to reliable monitoring of their levels in various biological matrices, may be useful in the prevention, diagnosis, monitoring, and treatment of some neurodegenerative and psychiatric diseases. The aim of this review is to highlight the most relevant methods currently available for analysis of neuroactive steroids, with an emphasis on immunoanalytical methods and gas, or liquid chromatography combined with mass spectrometry.


Asunto(s)
Hormonas/sangre , Espectrometría de Masas/métodos , Neuroesteroides/sangre , Animales , Análisis Químico de la Sangre/métodos , Hormonas/metabolismo , Humanos , Inmunoensayo/métodos , Neuroesteroides/metabolismo
15.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375728

RESUMEN

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.


Asunto(s)
Brasinoesteroides/síntesis química , Brasinoesteroides/farmacología , Técnicas de Química Sintética , Nitrógeno/química , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/química , Estructura Molecular , Desarrollo de la Planta/efectos de los fármacos
16.
Bioorg Chem ; 100: 103868, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388425

RESUMEN

Triterpene bidesmosides are considered as highly cytotoxic saponins, usually less toxic against normal cells than monodesmosides, and less haemolytic. Biological activity of the betulin-type bidesmosides, rarely found in Nature, and seldom prepared due to serious synthetic problems, is poorly recognized. We report herein a protocol for the preparation of disubstituted lupane saponins (betulin bidesmosides) by treatment of their benzoates with potassium carbonate in dichloromethane / methanol solution. Cytotoxicity of all compounds was tested in vitro for a series of cancer cell lines, as well as normal human skin BJ fibroblasts. Presence of l-rhamnose moiety is crucial for cytotoxicity of betulin bidesmosides. On the other hand, l-arabinose fragment connected to lupane C-3 carbon atom significantly decreases activity. Presented results clearly show that betulin bidesmosides have significant clinical potential as anticancer agents.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Triterpenos/química , Triterpenos/farmacología , Antineoplásicos/síntesis química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células HeLa , Humanos , Células MCF-7 , Neoplasias/tratamiento farmacológico , Ramnosa/análogos & derivados , Ramnosa/síntesis química , Ramnosa/farmacología , Relación Estructura-Actividad , Triterpenos/síntesis química
17.
Food Chem Toxicol ; 137: 111164, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32001316

RESUMEN

Plant hormone brassinosteroids (BRs) have multiple important functions in plants. They have also been found to exhibit anti-tumor, anti-angiogenic and anti-proliferative activity. The experimental part of this article describes the effects of BR biosynthetic precursors on prostate cancer cells. The experiments were performed with LNCaP and DU-145 prostate cancer cell lines. These were cultivated and treated with tested BRs in different concentrations and time intervals. The tested compounds were found to affect cell viability, nuclear receptor expression, cell cycle and apoptosis in the tumor cells. IC50 concentrations were determined based on MTT test and the two most active compounds (cathasterone and 6-oxocampestanol) were used in the next experiments. Cathasterone was the most effective of all tested compounds and effectively inhibited integrity of cell spheres. It was found that both BRs had no significant effect on the cell cycle in LNCaP at IC50 concentration, while in DU-145 a significant block in G0/G1 phase after the BR treatment was observed. The effect of BRs on the nuclear steroid receptors was manifested by changes in their expression and localization. BRs demonstrated their significant effect on prostate cancer cells and the compounds have potential used in anticancer drug research and cancer treatment.


Asunto(s)
Antineoplásicos/farmacología , Brasinoesteroides/farmacología , Receptores de Esteroides/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico
18.
Biomolecules ; 11(1)2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33383794

RESUMEN

Plants have developed various acclimation strategies in order to counteract the negative effects of abiotic stresses (including temperature stress), and biological membranes are important elements in these strategies. Brassinosteroids (BR) are plant steroid hormones that regulate plant growth and development and modulate their reaction against many environmental stresses including temperature stress, but their role in modifying the properties of the biological membrane is poorly known. In this paper, we characterise the molecular dynamics of chloroplast membranes that had been isolated from wild-type and a BR-deficient barley mutant that had been acclimated to low and high temperatures in order to enrich the knowledge about the role of BR as regulators of the dynamics of the photosynthetic membranes. The molecular dynamics of the membranes was investigated using electron paramagnetic resonance (EPR) spectroscopy in both a hydrophilic and hydrophobic area of the membranes. The content of BR was determined, and other important membrane components that affect their molecular dynamics such as chlorophylls, carotenoids and fatty acids in these membranes were also determined. The chloroplast membranes of the BR-mutant had a higher degree of rigidification than the membranes of the wild type. In the hydrophilic area, the most visible differences were observed in plants that had been grown at 20 °C, whereas in the hydrophobic core, they were visible at both 20 and 5 °C. There were no differences in the molecular dynamics of the studied membranes in the chloroplast membranes that had been isolated from plants that had been grown at 27 °C. The role of BR in regulating the molecular dynamics of the photosynthetic membranes will be discussed against the background of an analysis of the photosynthetic pigments and fatty acid composition in the chloroplasts.


Asunto(s)
Brasinoesteroides/metabolismo , Cloroplastos/metabolismo , Hordeum/fisiología , Aclimatación , Cloroplastos/genética , Respuesta al Choque por Frío , Respuesta al Choque Térmico , Hordeum/genética , Simulación de Dinámica Molecular , Mutación , Fotosíntesis
19.
Biomolecules ; 9(12)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835421

RESUMEN

We have recently discovered that brassinosteroids (BRs) can inhibit the growth of etiolated pea seedlings dose-dependently in a similar manner to the 'triple response' induced by ethylene. We demonstrate here that the growth inhibition of etiolated pea shoots strongly correlates with increases in ethylene production, which also responds dose-dependently to applied BRs. We assessed the biological activities of two natural BRs on pea seedlings, which are excellent material as they grow rapidly, and respond both linearly and uni-phasically to applied BRs. We then compared the BRs' inhibitory effects on growth, and induction of ethylene and ACC (1-aminocyclopropane-1-carboxylic acid) production, to those of representatives of other phytohormone classes (cytokinins, auxins, and gibberellins). Auxin induced ca. 50-fold weaker responses in etiolated pea seedlings than brassinolide, and the other phytohormones induced much weaker (or opposite) responses. Following the optimization of conditions for determining ethylene production after BR treatment, we found a positive correlation between BR bioactivity and ethylene production. Finally, we optimized conditions for pea growth responses and developed a new, highly sensitive, and convenient bioassay for BR activity.


Asunto(s)
Brasinoesteroides/farmacología , Etilenos/metabolismo , Pisum sativum/efectos de los fármacos , Aminoácidos Cíclicos/metabolismo , Bioensayo/métodos , Inhibidores de Crecimiento/farmacología , Ácidos Indolacéticos/farmacología , Pisum sativum/crecimiento & desarrollo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/farmacocinética , Reguladores del Crecimiento de las Plantas/farmacología , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo
20.
Front Plant Sci ; 10: 450, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031786

RESUMEN

Soil salinity is severely affecting crop productivity in many countries, particularly in the Mediterranean area. To evaluate early plant responses to increased salinity and characterize tolerance markers, three important Brassica crops - Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (B. oleracea var. capitata) and kale (B. oleracea var. acephala) were subjected to short-term (24 h) salt stress by exposing them to NaCl at concentrations of 50, 100, or 200 mM. Physiological (root growth, photosynthetic performance parameters, and Na+/K+ ratio) and biochemical parameters (proline content and lipid peroxidation as indicated by malondialdehyde, MDA, levels) in the plants' roots and leaves were then measured. Photosynthetic parameters such as the total performance index PItotal (describing the overall efficiency of PSI, PSII and the intersystem electron transport chain) appeared to be the most salinity-sensitive parameter and informative stress marker. This parameter was decreased more strongly in Chinese cabbage than in white cabbage and kale. It indicated that salinity reduced the capacity of the photosynthetic system for efficient energy conversion, particularly in Chinese cabbage. In parallel with the photosynthetic impairments, the Na+/K+ ratio was highest in Chinese cabbage leaves and lowest in kale leaves while kale root is able to keep high Na+/K+ ratio without a significant increase in MDA. Thus Na+/K+ ratio, high in root and low in leaves accompanying with low MDA level is an informative marker of salinity tolerance. The crops' tolerance was positively correlated with levels of the stress hormone abscisic acid (ABA) and negatively correlated with levels of jasmonic acid (JA), and jasmonoyl-L-isoleucine (JA-Ile). Furthermore, salinity induced contrasting changes in levels of the growth-promoting hormones brassinosteroids (BRs). The crop's tolerance was positively correlated with levels of BR precursor typhasterol while negatively with the active BR brassinolide. Principal Component Analysis revealed correlations in observed changes in phytohormones, biochemical, and physiological parameters. Overall, the results show that kale is the most tolerant of the three species and Chinese cabbage the most sensitive to salt stress, and provide holistic indications of the spectrum of tolerance mechanisms involved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...