RESUMEN
Iron is an essential nutrient but is toxic in excess mainly under acidic conditions. Yeasts have emerged as low cost, highly efficient soil inoculants for the decontamination of metal-polluted areas, harnessing an increasing understanding of their metal tolerance mechanisms. Here, we investigated the effects of extracellular iron and acid pH stress on the dimorphism of Yarrowia lipolytica. Its growth was unaffected by 1 or 2 mM FeSO4, while a strong cellular iron accumulation was detected. However, the iron treatments decreased the hyphal length and number, mainly at 2 mM FeSO4 and pH 4.5. Inward cell membrane H+ fluxes were found at pH 4.5 and 6.0 correlated with a pH increase at the cell surface and a conspicuous yeast-to-hypha transition activity. Conversely, a remarkable H+ efflux was detected at pH 3.0, related to the extracellular microenvironment acidification and inhibition of yeast-to-hypha transition. Iron treatments intensified H+ influxes at pH 4.5 and 6.0 and inhibited H+ efflux at pH 3.0. Moreover, iron treatments inhibited the expression and activities of the plasma membrane H+-ATPase, with the H+ transport inhibited to a greater extent than the ATP hydrolysis, suggesting an iron-induced uncoupling of the pump. Our data indicate that Y. lipolytica adaptations to high iron and acidic environments occur at the expense of remodelling the yeast morphogenesis through a cellular pH modulation by H+-ATPases and H+ coupled transporters, highlighting the capacity of this non-conventional yeast to accumulate high amounts of iron and its potential application for bioremediation.
Asunto(s)
Proteínas Fúngicas/metabolismo , Hierro/metabolismo , ATPasas de Translocación de Protón/metabolismo , Yarrowia/crecimiento & desarrollo , Adenosina Trifosfato/metabolismo , Concentración de Iones de Hidrógeno , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Yarrowia/metabolismoRESUMEN
CaThi is a thionin-like peptide isolated from fruits of Capsicum annuum, which has strong antimicrobial activity against bacteria, yeasts and filamentous fungi, and induced reactive oxygen species (ROS) in fungi. ROS are molecules that appear in the early stages of programmed cell death or apoptosis in fungi. Due to this fact, in this work we analyzed some events that may be related to process of apoptosis on yeast induced by CaThi. To investigate this possibility, we evaluated phosphatidylserine (PS) externalization, presence of active caspases and the ability of CaThi to bind to DNA in Candida tropicalis cells. Additionally, we investigated mitochondrial membrane potential, cell surface pH, and extracellular H+ fluxes in C. tropicalis cells after treatment with CaThi. Our results showed that CaThi induced PS externalization in the outer leaflet of the cell membrane, activation of caspases, and it had the ability for DNA binding and to dissipate mitochondrial membrane potential. In addition, the cell surface pH increased significantly when the C. tropicalis cells were exposed to CaThi which corroborates with ~96% inhibition on extracellular H+ efflux. Taking together, these data suggest that this peptide is capable of promoting an imbalance in pH homeostasis during yeast cell death playing a modulatory role in the H+ transport systems. In conclusion, our results strongly indicated that CaThi triggers apoptosis in C. tropicalis cells, involving a pH signaling mechanism.
Asunto(s)
Apoptosis/efectos de los fármacos , Capsicum/química , Caspasas/metabolismo , Frutas/química , Péptidos/farmacología , Proteínas de Plantas/farmacología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Activación Enzimática/efectos de los fármacos , Concentración de Iones de Hidrógeno , Péptidos/química , Proteínas de Plantas/química , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Polyamines play a regulatory role in eukaryotic cell growth and morphogenesis. Despite many molecular advances, the underlying mechanism of action remains unclear. Here, we investigate a mechanism by which spermine affects the morphogenesis of a dimorphic fungal model of emerging relevance in plant interactions, Yarrowia lipolytica, through the recruitment of a phytohormone-like pathway involving activation of the plasma membrane P-type H+-ATPase. Morphological transition was followed microscopically, and the H+-ATPase activity was analyzed in isolated membrane vesicles. Proton flux and acidification were directly probed at living cell surfaces by a non-invasive selective ion electrode technique. Spermine and indol-3-acetic acid (IAA) induced the yeast-hypha transition, influencing the colony architecture. Spermine induced H+-ATPase activity and H+ efflux in living cells correlating with yeast-hypha dynamics. Pharmacological inhibition of spermine and IAA pathways prevented the physio-morphological responses, and indicated that spermine could act upstream of the IAA pathway. This study provides the first compelling evidence on the fungal morphogenesis and colony development as modulated by a spermine-induced acid growth mechanism analogous to that previously postulated for the multicellular growth regulation of plants.
RESUMEN
BACKGROUND: V-ATPase interactions with cholesterol enriched membrane microdomains have been related to metastasis in a variety of cancers, but the underlying mechanism remains at its beginnings. It has recently been reported that the inhibition of this H+ pump affects cholesterol mobilization to the plasma membrane. METHODS: Inhibition of melanoma cell migration and invasiveness was assessed by wound healing and Transwell assays in murine cell lines (B16F10 and Melan-A). V-ATPase activity was measured in vitro by ATP hydrolysis and H+ transport in membrane vesicles, and intact cell H+ fluxes were measured by using a non-invasive Scanning Ion-selective Electrode Technique (SIET). RESULTS: Cholesterol depletion by 5mM MßCD was found to be inhibitory to the hydrolytic and H+ pumping activities of the V-ATPase of melanoma cell lines, as well as to the migration and invasiveness capacities of these cells. Nearly the same effects were obtained using concanamycin A, a specific inhibitor of V-ATPase, which also promoted a decrease of the H+ efflux in live cells at the same extent of MßCD. CONCLUSIONS: We found that cholesterol depletion significantly affects the V-ATPase activity and the initial metastatic processes following a profile similar to those observed in the presence of the V-ATPase specific inhibitor, concanamycin. GENERAL SIGNIFICANCE: The results shed new light on the functional role of the interactions between V-ATPases and cholesterol-enriched microdomains of cell membranes that contribute with malignant phenotypes in melanoma.
Asunto(s)
Colesterol/metabolismo , Melanoma Experimental/tratamiento farmacológico , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/efectos de los fármacos , Invasividad Neoplásica/prevención & control , Proteínas de Neoplasias/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Adenosina Trifosfato/metabolismo , Animales , Transporte Biológico Activo/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Macrólidos/farmacología , Melanoma Experimental/enzimología , Melanoma Experimental/patología , Fluidez de la Membrana/efectos de los fármacos , Ratones , Proteínas de Neoplasias/metabolismo , Protones , ATPasas de Translocación de Protón Vacuolares/metabolismo , beta-Ciclodextrinas/farmacologíaRESUMEN
V H(+)-ATPase has an important role in a variety of key physiological processes. This enzyme is reversibly activated/partly inactivated by the addition/exhaustion of extracellular glucose. The current model of its regulation assumes the reversible disassembly/reassembly of â¼60-70% of the V1 and V0 membrane complexes, which are responsible for ATP hydrolysis and H(+) conductance, respectively. The number of assembled complexes determines the pump activity because disassembled complexes are inactive. The model predicts the identical catalytic properties for the activated and semi-active enzymes molecules. To verify the model predictions we have isolated total membranes from yeast spheroplasts that were pre-incubated either with or without glucose. Nitrate treatment of membranes revealed the similar ATPase inhibition for two enzyme states, suggesting that they have identical structures that are essential for ATP hydrolysis. However, H(+) transport was inhibited more than the ATPase activities, indicating a nitrate uncoupling action, which was significantly higher for the nonactivated enzyme. This finding suggests that the structure of the non-activated enzyme, which is essential for H(+) transport, is less stable than that of the activated enzyme. Moreover, the glucose activation of the pump increases i) its coupling capacity; ii) its K(M) for ATP hydrolysis and ATP affinity for H(+) transport; iii) the Vmax for H(+) transport in comparison with the Vmax for ATP hydrolysis and iv) the immune reactivity of catalytic subunit A and regulatory subunit B by 9.3 and 2.4 times, respectively. The protein content of subunits A and B was not changed by extracellular glucose. We propose that instead of the dissociation/reassociation of complexes V1 and V0, changes in the extracellular glucose concentration cause reversible and asymmetrical modulations in the immune reactivity of subunits A and B by their putative biochemical modifications. This response asymmetrically modulates H(+)-transport and ATP hydrolysis, exhibiting distinct properties for the activated versus non-activated enzymes.
Asunto(s)
Glucosa/metabolismo , Hidrógeno/metabolismo , Nitratos/metabolismo , Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Transporte Biológico Activo , Activación Enzimática , Espacio Extracelular/metabolismo , HidrólisisRESUMEN
This study establishes the role of P(5A)-type Cta4 ATPase in Ca(2+) sequestration in the endoplasmic reticulum by detecting an ATP-dependent, vanadate-sensitive and FCCP insensitive (45)Ca(2+)-transport in fission yeast membranes isolated by cellular fractionation. Specifically, the Ca(2+)-ATPase transport activity was decreased in ER membranes isolated from cells lacking a cta4(+) gene. Furthermore, a disruption of cta4(+) resulted in 6-fold increase of intracellular Ca(2+) levels, sensitivity towards accumulation of misfolded proteins in ER and ER stress, stimulation of the calcineurin phosphatase activity and vacuolar Ca(2+) pumping. These data provide compelling biochemical evidence for a P(5A)-type Cta4 ATPase as an essential component of Ca(2+) transport system and signaling network which regulate, in conjunction with calcineurin, the ER functionality in fission yeast.
Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/enzimología , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Adenosina Trifosfato/farmacología , Transporte Biológico/efectos de los fármacos , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Eliminación de Gen , Glicosilación/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Membranas Intracelulares/enzimología , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Schizosaccharomyces/crecimiento & desarrolloRESUMEN
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50=38.4 nM) than Golgi and vacuole pumps (I50=0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated.
Asunto(s)
Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Vías Secretoras , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/metabolismo , Retículo Endoplásmico/inmunología , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/inmunología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/inmunología , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/inmunologíaRESUMEN
The effect of aluminum on dimorphic fungi Yarrowia lipolytica was investigated. High aluminum (0.5-1.0 mM AlK(SO(4))(2)) inhibits yeast-hypha transition. Both vanadate-sensitive H(+) transport and ATPase activities were increased in total membranes isolated from aluminum-treated cells, indicating that a plasma membrane H(+) pump was stimulated by aluminum. Furthermore, Al-treated cells showed a stronger H(+) efflux in solid medium. The present results suggest that alterations in the plasma membrane H(+) transport might underline a pH signaling required for yeast/hyphal development. The data point to the cell surface pH as a determinant of morphogenesis of Y. lipolytica and the plasma membrane H(+)-ATPase as a key factor of this process.
Asunto(s)
Aluminio/farmacología , Transporte Iónico/efectos de los fármacos , Morfogénesis/efectos de los fármacos , ATPasas de Translocación de Protón/fisiología , Yarrowia/efectos de los fármacos , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Concentración de Iones de Hidrógeno , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Transducción de Señal , Yarrowia/química , Yarrowia/crecimiento & desarrolloRESUMEN
Total membrane vesicles isolated from Tritrichomonas foetus showed an ATP-dependent Ca(2+) uptake, which was not sensitive to 10 microM protonophore FCCP but was blocked by orthovanadate, the inhibitor of P-type ATPases (I(50)=130 microM), and by the Ca(2+)/H(+) exchanger, A-23187. The Ca(2+) uptake was prevented also by thapsigargin, an inhibitor of the SERCA Ca(2+)-ATPases. The sensitivity of the Ca(2+) uptake by the protozoan membrane vesicles to thapsigargin was similar to that of Ca(2+)-ATPase from rabbit muscle sarcoplasmic reticulum. Fractionation of the total membrane vesicles in sucrose density gradient revealed a considerable peak of Ca(2+) transport activity that co-migrated with the Golgi marker guanosine diphosphatase (GDPase). Electron microscopy confirmed that membrane fractions of the peak were enriched with the Golgi membranes. The Golgi Ca(2+)-ATPase contributed to the Ca(2+) uptake by all membrane vesicles 80-85%. We conclude that: (i) the Golgi and/or Golgi-like vesicles form the main Ca(2+) store compartment in T. foetus; (ii) Ca(2+) ATPase is responsible for the Ca(2+) sequestering in this protozoan, while Ca(2+)/H(+) antiporter is not involved in the process; (iii) the Golgi pump of this ancient eukaryotic microorganism appears to be similar to the enzymes of the SERCA family by its sensitivity to thapsigargin.
Asunto(s)
ATPasas Transportadoras de Calcio/metabolismo , Calcio/metabolismo , Aparato de Golgi/metabolismo , Tritrichomonas foetus/metabolismo , Animales , Aparato de Golgi/ultraestructura , Microscopía Electrónica , Conejos , Retículo Sarcoplasmático/metabolismo , Tritrichomonas foetus/ultraestructuraRESUMEN
Antimicrobial proteins have been isolated from a wide range of plant species. More recently, it has become increasingly clear that these types of proteins play an important role in the protection of plants. In this study, we investigate the presence of defense-related proteins from passion fruit (Passiflora edulis f. flavicarpa) seeds. Initially, seed flour was extracted for 2h (at 4 degrees C) with phosphate buffer, pH 5.5. The precipitate obtained between 0 and 70% relative ammonium sulfate saturation was re-dissolved in distilled water and heated at 80 degrees C for 15 min. The resulting suspension was clarified by centrifugation and the supernatant (F/0-70) was extensively dialyzed. A Sephadex G-50 size exclusion column was employed for further separation of proteins. The fraction with antifungal activity was pooled and submitted to CM-Sepharose cation exchange. Two proteins, named Pf1 and Pf2, were eluted in 0.1 and 0.2M of salt, respectively, and submitted to reverse-phase chromatography in HPLC. This fraction inhibited the growth, in an in vitro assay, of the phytopathogenic fungi Fusarium oxysporum and colletotrichum lindemuthianum and the yeast Saccharomyces cerevisiae and strongly inhibited glucose-stimulated acidification of the medium by F. oxysporum in a dose-dependent manner. The molecular masses of these proteins, referred to now as Pf1-RP and Pf2-RP, were obtained by MALDI-TOF spectrometry and corresponded to 12,088 Da for Pf1-RP and 11,930 Da for Pf2-RP. These proteins were also subjected to automated N-terminal amino acid sequencing. Sequence comparisons for the heavy subunit of Pf2-RP showed the presence of a protein with a high degree of homology to storage 2S albumins.
Asunto(s)
Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Passiflora/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Albuminas 2S de Plantas , Secuencia de Aminoácidos , Antígenos de Plantas , División Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo/química , Fusarium/química , Fusarium/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Peso Molecular , Passiflora/química , Passiflora/microbiología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/aislamiento & purificación , Semillas/química , Semillas/metabolismo , Semillas/microbiología , Alineación de Secuencia , Especificidad de la EspecieRESUMEN
The analysis of the Schizosaccharomyces pombe genome revealed the presence of 14 putative P-type ATPases. The clustering of ATPases resembles that of Saccharomyces cerevisiae, indicating that the main classes of pumps were already present before the split of the Archiascomycetes from the other Ascomycota. The overall amino acid identity between fission and budding yeast P-type ATPases is generally low (30-50%). This is similar to the fungus-plant and fungus-animal comparisons, suggesting that fungal ATPases underwent an extensive process of diversification. Unlike Sac. cerevisiae, fission yeast lacks Na(+)-ATPases, has a single heavy-metal ATPase and three ATPases of unknown specificity. The observed divergence within these fungi might reflect physiological differences, including adaptation to environmental stresses.