Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 907: 167778, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37863224

RESUMEN

The scarcity and contamination of freshwater resources are extremely critical issues today, and the expansion of water reuse has been considered as an option to decrease its impact. Therefore, the reuse of microbial desalination (MDC)-treated spent geothermal brine for agricultural purposes arises as a good solution to prevent water contamination and provide sustainable water usage. In this study, the potential of treated spent geothermal water from MDC system as a nutrient solution for the hydroponic cultivation of lettuce was evaluated. The effects of different water samples (Hoagland solution (R1) as a control, MDC-treated water (R2), 1:1, v/v mixture of MDC-treated water and Hoagland solution (R3), 4:1, v/v mixture of MDC-treated water and Hoagland solution (R4), and tap water (R5)) on lettuce growth were considered. The application of R3 and R4 samples for hydroponic lettuce cultivation was promising since the lettuce plants uptake sufficient nutrients for their growth and productivity with low toxic metal concentrations. In addition, the chlorophyll-a, chlorophyll-b, and carotene contents of lettuce were in the range of 1.045-2.391 mg/g, 0.761-1.986 mg/g, and 0.296-0.423 mg/g in different water samples, respectively. The content of chlorophyll-a was highest in R1 (2.391 mg/g), followed by R3 (2.371 mg/g). Furthermore, the health risk assessment of heavy metal accumulations in the lettuce plants cultivated in the various water samples was determined. Results showed that heavy metal exposure via lettuce consumption is unlikely to suffer noticeable adverse health problems with values below the permissible limit value.


Asunto(s)
Lactuca , Metales Pesados , Hidroponía/métodos , Clorofila , Agua , Medición de Riesgo , Nutrientes
2.
Chemosphere ; 285: 131370, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34252811

RESUMEN

As a result of a much needed paradigm shift worldwide, treated saline water is being considered as a viable option for replacing freshwater resources in agricultural irrigation. Vastly produced geothermal brine in Turkey may pose a significant environmental risk due to its high ionic strength, specifically due to boron. Boron species, which are generally found uncharged in natural waters, are costly to remove using high-throughput membrane technologies such as reverse osmosis. Recent advances in bioelectrochemical systems (BES) has facilitated development of energetically self-sufficient wastewater treatment and desalination. In this study, removal of boron from synthetic solutions and real geothermal waters, along with simultaneous energy production, using the microbial desalination cell (MDC) were investigated. Optimization studies were conducted by varying boron concentrations (5, 10, and 20 mg L-1), air flow rates (0, 1, and 2 L min-1), electrode areas (18, 24, 36, and 72 cm2), catholyte solutions, and operating modes. Even though the highest concentration decrease was observed for 20 mg-B L-1, 5 mg-B L-1 concentration experiment gave the closest result to the 2.4 mg-B L-1 limit value asserted by WHO. Effect of electrode surface area was proven to be significant on boron removal efficiency. Employing the optimum conditions acquired with synthetic solutions, boron and COD removal efficiencies from real geothermal brine were 44.3% and 90.6%, respectively. MDC, being in its early levels of technology readiness, produced promising desalination and energy production results in removal of boron from geothermal brine.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Boro , Electrodos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA