Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256941

RESUMEN

Tumour-associated angiogenesis play key roles in tumour growth and cancer metastasis. Consequently, several anti-angiogenic drugs such as sunitinib and axitinib have been approved for use as anti-cancer therapies. However, the majority of these drugs target the vascular endothelial growth factor A (VEGFA)/VEGF receptor 2 (VEGFR2) pathway and have shown mixed outcome, largely due to development of resistances and increased tumour aggressiveness. In this study, we used the zebrafish model to screen for novel anti-angiogenic molecules from a library of compounds derived from natural products. From this, we identified canthin-6-one, an indole alkaloid, which inhibited zebrafish intersegmental vessel (ISV) and sub-intestinal vessel development. Further characterisation revealed that treatment of canthin-6-one reduced ISV endothelial cell number and inhibited proliferation of human umbilical vein endothelial cells (HUVECs), suggesting that canthin-6-one inhibits endothelial cell proliferation. Of note, canthin-6-one did not inhibit VEGFA-induced phosphorylation of VEGFR2 in HUVECs and downstream phosphorylation of extracellular signal-regulated kinase (Erk) in leading ISV endothelial cells in zebrafish, suggesting that canthin-6-one inhibits angiogenesis independent of the VEGFA/VEGFR2 pathway. Importantly, we found that canthin-6-one impairs tumour-associated angiogenesis in a zebrafish B16F10 melanoma cell xenograft model and synergises with VEGFR inhibitor sunitinib malate to inhibit developmental angiogenesis. In summary, we showed that canthin-6-one exhibits anti-angiogenic properties in both developmental and pathological contexts in zebrafish, independent of the VEGFA/VEGFR2 pathway and demonstrate that canthin-6-one may hold value for further development as a novel anti-angiogenic drug.

2.
EMBO J ; 42(11): e112590, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36912146

RESUMEN

During development, the lymphatic vasculature forms as a second network derived chiefly from blood vessels. The transdifferentiation of embryonic venous endothelial cells (VECs) into lymphatic endothelial cells (LECs) is a key step in this process. Specification, differentiation and maintenance of LEC fate are all driven by the transcription factor Prox1, yet the downstream mechanisms remain to be elucidated. We here present a single-cell transcriptomic atlas of lymphangiogenesis in zebrafish, revealing new markers and hallmarks of LEC differentiation over four developmental stages. We further profile single-cell transcriptomic and chromatin accessibility changes in zygotic prox1a mutants that are undergoing a LEC-VEC fate shift. Using maternal and zygotic prox1a/prox1b mutants, we determine the earliest transcriptomic changes directed by Prox1 during LEC specification. This work altogether reveals new downstream targets and regulatory regions of the genome controlled by Prox1 and presents evidence that Prox1 specifies LEC fate primarily by limiting blood vascular and haematopoietic fate. This extensive single-cell resource provides new mechanistic insights into the enigmatic role of Prox1 and the control of LEC differentiation in development.


Asunto(s)
Vasos Linfáticos , Pez Cebra , Animales , Pez Cebra/genética , Proteínas de Homeodominio/genética , Proteínas Supresoras de Tumor/genética , Células Endoteliales , Células Cultivadas , Diferenciación Celular , Linfangiogénesis/genética , Factores de Transcripción/genética , Análisis de la Célula Individual
3.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750583

RESUMEN

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Asunto(s)
Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/enzimología , Linfangiogénesis , Vasos Linfáticos/enzimología , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/genética , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Vasos Linfáticos/embriología , ARN Ribosómico/genética , Ribosomas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206901

RESUMEN

Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing vasculature, plays critical roles in disease, including in cancer metastasis and chronic inflammation. Preclinical and recent clinical studies have now demonstrated therapeutic utility for several anti-lymphangiogenic agents, but optimal agents and efficacy in different settings remain to be determined. We tested the anti-lymphangiogenic property of 3,4-Difluorobenzocurcumin (CDF), which has previously been implicated as an anti-cancer agent, using zebrafish embryos and cultured vascular endothelial cells. We used transgenic zebrafish labelling the lymphatic system and found that CDF potently inhibits lymphangiogenesis during embryonic development. We also found that the parent compound, Curcumin, does not inhibit lymphangiogenesis. CDF blocked lymphatic and venous sprouting, and lymphatic migration in the head and trunk of the embryo. Mechanistically, CDF impaired VEGFC-VEGFR3-ERK signalling in vitro and in vivo. In an in vivo pathological model of Vegfc-overexpression, treatment with CDF rescued endothelial cell hyperplasia. CDF did not inhibit the kinase activity of VEGFR3 yet displayed more prolonged activity in vivo than previously reported kinase inhibitors. These findings warrant further assessment of CDF and its mode of action as a candidate for use in metastasis and diseases of aberrant lymphangiogenesis.

5.
Elife ; 102021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34003110

RESUMEN

The formation of new blood vessel networks occurs via angiogenesis during development, tissue repair, and disease. Angiogenesis is regulated by intracellular endothelial signalling pathways, induced downstream of vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs). A major challenge in understanding angiogenesis is interpreting how signalling events occur dynamically within endothelial cell populations during sprouting, proliferation, and migration. Extracellular signal-regulated kinase (Erk) is a central downstream effector of Vegf-signalling and reports the signalling that drives angiogenesis. We generated a vascular Erk biosensor transgenic line in zebrafish using a kinase translocation reporter that allows live-imaging of Erk-signalling dynamics. We demonstrate the utility of this line to live-image Erk activity during physiologically relevant angiogenic events. Further, we reveal dynamic and sequential endothelial cell Erk-signalling events following blood vessel wounding. Initial signalling is dependent upon Ca2+ in the earliest responding endothelial cells, but is independent of Vegfr-signalling and local inflammation. The sustained regenerative response, however, involves a Vegfr-dependent mechanism that initiates concomitantly with the wound inflammatory response. This work reveals a highly dynamic sequence of signalling events in regenerative angiogenesis and validates a new resource for the study of vascular Erk-signalling in real-time.


Asunto(s)
Células Endoteliales/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Sistema de Señalización de MAP Quinasas/fisiología , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Animales , Células Cultivadas , Sistema de Señalización de MAP Quinasas/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
6.
Front Physiol ; 11: 842, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32792978

RESUMEN

The formation of the vertebrate vasculature involves the acquisition of endothelial cell identities, sprouting, migration, remodeling and maturation of functional vessel networks. To understand the cellular and molecular processes that drive vascular development, live-imaging of dynamic cellular events in the zebrafish embryo have proven highly informative. This review focusses on recent advances, new tools and new insights from imaging studies in vascular cell biology using zebrafish as a model system.

7.
Development ; 147(18)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32839180

RESUMEN

The lymphatic vasculature develops primarily from pre-existing veins. A pool of lymphatic endothelial cells (LECs) first sprouts from cardinal veins followed by migration and proliferation to colonise embryonic tissues. Although much is known about the molecular regulation of LEC fate and sprouting during early lymphangiogenesis, we know far less about the instructive and permissive signals that support LEC migration through the embryo. Using a forward genetic screen, we identified mbtps1 and sec23a, components of the COP-II protein secretory pathway, as essential for developmental lymphangiogenesis. In both mutants, LECs initially depart the cardinal vein but then fail in their ongoing migration. A key cargo that failed to be secreted in both mutants was a type II collagen (Col2a1). Col2a1 is normally secreted by notochord sheath cells, alongside which LECs migrate. col2a1a mutants displayed defects in the migratory behaviour of LECs and failed lymphangiogenesis. These studies thus identify Col2a1 as a key cargo secreted by notochord sheath cells and required for the migration of LECs. These findings combine with our current understanding to suggest that successive cell-to-cell and cell-matrix interactions regulate the migration of LECs through the embryonic environment during development.


Asunto(s)
Movimiento Celular/fisiología , Colágeno Tipo II/metabolismo , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Pez Cebra/metabolismo , Animales , Comunicación Celular/fisiología , Proliferación Celular/fisiología , Linfangiogénesis/fisiología , Morfogénesis/fisiología , Venas/metabolismo
8.
Cell Rep ; 28(8): 2023-2036.e4, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31433980

RESUMEN

Lymphatic vascular development establishes embryonic and adult tissue fluid balance and is integral in disease. In diverse vertebrate organs, lymphatic vessels display organotypic function and develop in an organ-specific manner. In all settings, developmental lymphangiogenesis is considered driven by vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3), whereas a role for VEGFR2 remains to be fully explored. Here, we define the zebrafish Vegf/Vegfr code in receptor binding studies. We find that while Vegfd directs craniofacial lymphangiogenesis, it binds Kdr (a VEGFR2 homolog) but surprisingly, unlike in mammals, does not bind Flt4 (VEGFR3). Epistatic analyses and characterization of a kdr mutant confirm receptor-binding analyses, demonstrating that Kdr is indispensible for rostral craniofacial lymphangiogenesis, but not caudal trunk lymphangiogenesis, in which Flt4 is central. We further demonstrate an unexpected yet essential role for Kdr in inducing lymphatic endothelial cell fate. This work reveals evolutionary divergence in the Vegf/Vegfr code that uncovers spatially restricted mechanisms of developmental lymphangiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Evolución Molecular , Linfangiogénesis , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Ligandos , Ratones , Unión Proteica , Proteolisis , Reproducibilidad de los Resultados , Factor C de Crecimiento Endotelial Vascular/química , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
9.
Elife ; 82019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31038457

RESUMEN

Lymphatic vascular development involves specification of lymphatic endothelial progenitors that subsequently undergo sprouting, proliferation and tissue growth to form a complex second vasculature. The Hippo pathway and effectors Yap and Taz control organ growth and regulate morphogenesis and cellular proliferation. Yap and Taz control angiogenesis but a role in lymphangiogenesis remains to be fully elucidated. Here we show that YAP displays dynamic changes in lymphatic progenitors and Yap1 is essential for lymphatic vascular development in zebrafish. Maternal and Zygotic (MZ) yap1 mutants show normal specification of lymphatic progenitors, abnormal cellular sprouting and reduced numbers of lymphatic progenitors emerging from the cardinal vein during lymphangiogenesis. Furthermore, Yap1 is indispensable for Vegfc-induced proliferation in a transgenic model of Vegfc overexpression. Paracrine Vegfc-signalling ultimately increases nuclear YAP in lymphatic progenitors to control lymphatic development. We thus identify a role for Yap in lymphangiogenesis, acting downstream of Vegfc to promote expansion of this vascular lineage.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Vasos Linfáticos/efectos de los fármacos , Transactivadores/metabolismo , Transactivadores/farmacología , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/farmacología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Inactivación de Genes , Linfangiogénesis/efectos de los fármacos , Vasos Linfáticos/citología , Masculino , Morfogénesis/efectos de los fármacos , Transactivadores/genética , Proteínas Señalizadoras YAP , Pez Cebra/genética , Proteínas de Pez Cebra/genética
10.
Dev Cell ; 49(2): 279-292.e5, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-31014480

RESUMEN

The correct assignment of cell fate within fields of multipotent progenitors is essential for accurate tissue diversification. The first lymphatic vessels arise from pre-existing veins after venous endothelial cells become specified as lymphatic progenitors. Prox1 specifies lymphatic fate and labels these progenitors; however, the mechanisms restricting Prox1 expression and limiting the progenitor pool remain unknown. We identified a zebrafish mutant that displayed premature, expanded, and prolonged lymphatic specification. The gene responsible encodes the regulator of alternative splicing, Nova2. In zebrafish and human endothelial cells, Nova2 selectively regulates pre-mRNA splicing for components of signaling pathways and phosphoproteins. Nova2-deficient endothelial cells display increased Mapk/Erk signaling, and Prox1 expression is dynamically controlled by Erk signaling. We identify a mechanism whereby Nova2-regulated splicing constrains Erk signaling, thus limiting lymphatic progenitor cell specification. This identifies the capacity of a factor that tunes mRNA splicing to control assignment of cell fate during vascular differentiation.


Asunto(s)
Vasos Linfáticos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN/metabolismo , Empalme Alternativo , Animales , Diferenciación Celular , Linaje de la Célula , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Proteínas de Homeodominio/metabolismo , Humanos , Linfangiogénesis , Vasos Linfáticos/citología , Masculino , Antígeno Ventral Neuro-Oncológico , Proteínas Supresoras de Tumor/metabolismo , Venas/citología , Venas/metabolismo , Pez Cebra
11.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30877134

RESUMEN

Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.


Asunto(s)
Vasos Linfáticos/fisiología , Células Madre/fisiología , Venas/fisiología , Pez Cebra/fisiología , Animales , Movimiento Celular/fisiología , Células Endoteliales/fisiología
12.
Methods Mol Biol ; 1846: 55-70, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30242752

RESUMEN

The accessibility and optical transparency of the zebrafish embryo offers a unique platform for live-imaging of developmental lymphangiogenesis. Transgenic lines labelling lymphatic progenitors and vessels enable researchers to visualize cellular processes and ask how they contribute to lymphatic development in genetic models. Furthermore, validated immunofluorescence staining for key signaling and cell fate markers (phosphorylated Erk and Prox1) allow single cell resolution studies of lymphatic differentiation. Here, we describe in detail how zebrafish embryos and larvae can be mounted for high resolution, staged imaging of lymphatic networks, how lymphangiogenesis can be reliably quantified and how immunofluorescence can reveal lymphatic signaling and differentiation. These methods offer researchers the opportunity to experimentally dissect developmental lymphangiogenesis with outstanding resolution.


Asunto(s)
Angiografía , Linfangiogénesis , Vasos Linfáticos/embriología , Imagen Molecular , Pez Cebra/embriología , Angiografía/métodos , Animales , Animales Modificados Genéticamente , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Técnica del Anticuerpo Fluorescente , Genes Reporteros , Proteínas de Homeodominio/metabolismo , Imagen Molecular/métodos , Fosforilación , Proteínas Supresoras de Tumor/metabolismo
13.
Microcirculation ; 23(6): 389-405, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27177346

RESUMEN

Cancer metastasis which predominantly occurs through blood and lymphatic vessels, is the leading cause of death in cancer patients. Consequently, several anti-angiogenic agents have been approved as therapeutic agents for human cancers such as metastatic renal cell carcinoma. Also, anti-lymphangiogenic drugs such as monoclonal antibodies VGX-100 and IMC-3C5 have undergone phase I clinical trials for advanced and metastatic solid tumors. Although anti-tumor-associated angiogenesis has proven to be a promising therapeutic strategy for human cancers, this approach is fraught with toxicities and development of drug resistance. This emphasizes the need for alternative anti-(lymph)angiogenic drugs. The use of zebrafish has become accepted as an established model for high-throughput screening, vascular biology, and cancer research. Importantly, various zebrafish transgenic lines have now been generated that can readily discriminate different vascular compartments. This now enables detailed in vivo studies that are relevant to both human physiological and tumor (lymph)angiogenesis to be conducted in zebrafish. This review highlights recent advancements in the zebrafish anti-vascular screening platform and showcases promising new anti-(lymph)angiogenic compounds that have been derived from this model. In addition, this review discusses the promises and challenges of the zebrafish model in the context of anti-(lymph)angiogenic compound discovery for cancer treatment.


Asunto(s)
Inhibidores de la Angiogénesis/química , Modelos Animales de Enfermedad , Pez Cebra , Animales , Descubrimiento de Drogas/métodos , Humanos , Linfangiogénesis/efectos de los fármacos , Neovascularización Patológica/tratamiento farmacológico
14.
Biol Open ; 4(10): 1270-80, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26369931

RESUMEN

Inflammatory bowel disease (IBD) is a disabling chronic inflammatory disease of the gastrointestinal tract. IBD patients have increased intestinal lymphatic vessel density and recent studies have shown that this may contribute to the resolution of IBD. However, the molecular mechanisms involved in IBD-associated lymphangiogenesis are still unclear. In this study, we established a novel inflammatory lymphangiogenesis model in zebrafish larvae involving colitogenic challenge stimulated by exposure to 2,4,6-trinitrobenzenesulfonic acid (TNBS) or dextran sodium sulphate (DSS). Treatment with either TNBS or DSS resulted in vascular endothelial growth factor receptor (Vegfr)-dependent lymphangiogenesis in the zebrafish intestine. Reduction of intestinal inflammation by the administration of the IBD therapeutic, 5-aminosalicylic acid, reduced intestinal lymphatic expansion. Zebrafish macrophages express vascular growth factors vegfaa, vegfc and vegfd and chemical ablation of these cells inhibits intestinal lymphatic expansion, suggesting that the recruitment of macrophages to the intestine upon colitogenic challenge is required for intestinal inflammatory lymphangiogenesis. Importantly, this study highlights the potential of zebrafish as an inflammatory lymphangiogenesis model that can be used to investigate the role and mechanism of lymphangiogenesis in inflammatory diseases such as IBD.

15.
Nature ; 517(7536): 612-5, 2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25470057

RESUMEN

Pathogenic mycobacteria induce the formation of complex cellular aggregates called granulomas that are the hallmark of tuberculosis. Here we examine the development and consequences of vascularization of the tuberculous granuloma in the zebrafish-Mycobacterium marinum infection model, which is characterized by organized granulomas with necrotic cores that bear striking resemblance to those of human tuberculosis. Using intravital microscopy in the transparent larval zebrafish, we show that granuloma formation is intimately associated with angiogenesis. The initiation of angiogenesis in turn coincides with the generation of local hypoxia and transcriptional induction of the canonical pro-angiogenic molecule Vegfaa. Pharmacological inhibition of the Vegf pathway suppresses granuloma-associated angiogenesis, reduces infection burden and limits dissemination. Moreover, anti-angiogenic therapies synergize with the first-line anti-tubercular antibiotic rifampicin, as well as with the antibiotic metronidazole, which targets hypoxic bacterial populations. Our data indicate that mycobacteria induce granuloma-associated angiogenesis, which promotes mycobacterial growth and increases spread of infection to new tissue sites. We propose the use of anti-angiogenic agents, now being used in cancer regimens, as a host-targeting tuberculosis therapy, particularly in extensively drug-resistant disease for which current antibiotic regimens are largely ineffective.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/crecimiento & desarrollo , Neovascularización Patológica/microbiología , Transducción de Señal/efectos de los fármacos , Pez Cebra/microbiología , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Antibióticos Antituberculosos/farmacología , Carga Bacteriana/efectos de los fármacos , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Granuloma/tratamiento farmacológico , Granuloma/metabolismo , Granuloma/microbiología , Granuloma/patología , Hipoxia/metabolismo , Hipoxia/microbiología , Hipoxia/patología , Larva/efectos de los fármacos , Larva/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Macrófagos/patología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/patología , Mycobacterium marinum/patogenicidad , Neovascularización Patológica/tratamiento farmacológico , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis/patología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/crecimiento & desarrollo
16.
Development ; 141(13): 2680-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24903752

RESUMEN

Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.


Asunto(s)
Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/deficiencia , Factor D de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas de Unión al Calcio/metabolismo , Cartilla de ADN/genética , Hibridación in Situ , Linfangiogénesis/genética , Microscopía Confocal , Morfolinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas
17.
Zebrafish ; 10(2): 184-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23448252

RESUMEN

Several intestinal damage models have been developed using zebrafish, with the aim of recapitulating aspects of human inflammatory bowel disease (IBD). These experimentally induced inflammation models have utilized immersion exposure to an array of colitogenic agents (including live bacteria, bacterial products, and chemicals) to induce varying severity of inflammation. This technical report describes methods used to generate two chemically induced intestinal damage models using either dextran sodium sulfate (DSS) or trinitrobenzene sulfonic acid (TNBS). Methods to monitor intestinal damage and inflammatory processes, and chemical-genetic methods to manipulate the host response to injury are also described.


Asunto(s)
Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Enterocolitis/inducido químicamente , Inflamación/inducido químicamente , Enfermedades Inflamatorias del Intestino/inducido químicamente , Ácido Trinitrobencenosulfónico/farmacología , Pez Cebra , Azul Alcián/metabolismo , Animales , Antibacterianos/administración & dosificación , Antiinflamatorios/administración & dosificación , Descubrimiento de Drogas , Enterocolitis/tratamiento farmacológico , Enterocolitis/inmunología , Enterocolitis/microbiología , Citometría de Flujo , Humanos , Inmersión , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Interleucina-23/genética , Interleucina-23/inmunología , Interleucina-23/metabolismo , Intestinos/microbiología , Intestinos/patología , Larva , Microinyecciones , Morfolinos/administración & dosificación , Rojo Neutro/metabolismo , Neutrófilos/inmunología , Óxido Nítrico/metabolismo , Imagen Óptica , Reacción en Cadena de la Polimerasa , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
18.
Development ; 139(13): 2381-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627281

RESUMEN

We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/fisiología , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Regiones Promotoras Genéticas , Proteínas de Transporte Vesicular/genética , Proteínas de Pez Cebra/genética
19.
Dev Dyn ; 240(1): 288-98, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21181946

RESUMEN

Inflammatory bowel disease (IBD) results from dysfunctional interactions between the intestinal immune system and microbiota, influenced by host genetic susceptibility. Because a key feature of the pathology is intestinal epithelial damage, potential disease factors have been traditionally analyzed within the background of chemical colitis models in mice. The zebrafish has greatly complemented the mouse for modeling aspects of disease processes, with an advantage for high content drug screens. Larval zebrafish exposed to the haptenizing agent trinitrobenzene sulfonic acid (TNBS) displayed impaired intestinal homeostasis and inflammation reminiscent of human IBD. There was a marked induction of pro-inflammatory cytokines, the degradative enzyme mmp9 and leukocytosis. Enterocolitis was dependent on microbiota and Toll-like receptor signaling, that can be ameliorated by antibiotic and anti-inflammatory drug treatments. This system will be useful to rapidly interrogate in vivo the biological significance of the IBD candidate genes so far identified and to carry out pharmacological modifier screens.


Asunto(s)
Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Enterocolitis/microbiología , Enterocolitis/prevención & control , Tracto Gastrointestinal/microbiología , Metagenoma/fisiología , Pez Cebra , Animales , Antiinflamatorios/farmacología , Embrión no Mamífero , Enterocolitis/inducido químicamente , Enterocolitis/patología , Tracto Gastrointestinal/irrigación sanguínea , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/patología , Haptenos/inmunología , Haptenos/metabolismo , Humanos , Larva , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/fisiología , Ácido Trinitrobencenosulfónico , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...