Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Implant Dent ; 8(1): 17, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411479

RESUMEN

PURPOSE: Many points concerning the structure of osseointegration and the surrounding jaw bone remain unclear, and its optimal histological form has yet to be identified. The aim of this study was to clarify the structural characteristics of peri-implant jaw bone on the micro- and nano-scales by quantitatively evaluating bone quality. METHODS: Five samples of human mandibular bone containing dental implants and one dentate sample that had been in place for some years while the donors were still alive were collected. Bulk staining was performed, and 100-µm-thick polished specimens were prepared. The osteon distributions in peri-implant bone and mandibular cortical bone were measured, after which alignment analysis of biological apatite (BAp) crystallites and anisotropy analysis of collagen fiber orientation using second-harmonic generation imaging were carried out. RESULTS: Osteons in the vicinity of the implant body ran parallel to it. In the cortical bone at the base of the mandible, however, most osteons were oriented mesiodistally. The preferential alignment of BAp crystallites was generally consistent with osteon orientation. The orientation of collagen fibers in peri-implant jaw bone resembled the concentric rings seen in normal cortical bone, but there were also fibers that ran orthogonally across these concentric fibers. CONCLUSIONS: These results suggest that the mechanical strain imposed by implants causes the growth of cortical bone-like bone in areas that would normally consist of cancellous bone around the implants, and that its structural characteristics are optimized for the load environment of the peri-implant jaw bone.


Asunto(s)
Implantes Dentales , Apatitas , Cadáver , Colágeno/química , Humanos , Mandíbula/diagnóstico por imagen , Oseointegración
2.
Artículo en Inglés | MEDLINE | ID: mdl-32612985

RESUMEN

Platelet-rich fibrin (PRF) matrices were originally prepared using plain glass tubes without the aid of coagulation factors because coagulation factor XII is activated by glass surfaces. Recently, the use of silica-coated plastic tubes as a substitute of glass tubes has been recommended for PRF preparation. This recommendation is owing not only to the shortage of glass tubes for medical use in the market, but also the higher coagulation activity of silica-coated plastic tubes and equal quality of PRF. However, these matrices are not the same. To evaluate the differences, we compared glass- and silica-coated plastic tubes in terms of platelet distribution and quantity in concentrated growth factors (CGF). CGF matrices were immediately prepared from freshly collected blood samples, fixed after red thrombus removal, and divided into two equal pieces sagittally. One piece was used for CD41 detection and the other was applied as an isotype control. Platelet distribution in CGF matrices was examined, without embedding or sectioning, by a novel method using invisible near-infrared imaging. The dehydrated membranous CGF matrix was more transparent. Thus, the fluorescence signal was clearly detectable with less scattering. Platelets were distributed mainly in the distal side of the glass-prepared CGF matrix, but homogeneously in the silica-prepared CGF matrix. Platelet count was positively correlated with fluorescence intensity. Although not yet fully developed, this imaging technique enabled us to recognize the differences in platelet distribution and quantity in CGF matrices by excluding bias caused by the technical limitations of scanning electron microscopy and conventional immunohistochemical methods.

3.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580336

RESUMEN

Platelet-rich fibrin (PRF) is a fibrin matrix enriched with platelets. The PRF matrix is thought to form a steep gradient of platelet density around the region corresponding to the buffy coat in anticoagulated blood samples. However, this phenomenon has not yet been proven. To visualize platelet distribution in PRF in a non-invasive manner, we utilized near-infrared (NIR) imaging technology. In this study, four types of PRF matrices, bio-PRF, advanced-PRF (A-PRF), leukocyte-rich PRF (L-PRF), and concentrated growth factors (CGF) were compared. Blood samples collected from healthy, non-smoking volunteers were immediately centrifuged using four different protocols in glass tubes. The fixed PRF matrices were sagittally divided into two equal parts, and subjected to modified immunohistochemical examination. After probing with NIR dye-conjugated secondary antibody, the CD41+ platelets were visualized using an NIR imager. In L-PRF and CGF, platelets were distributed mainly on and below the distal surface, while in bio-PRF and A-PRF, platelet distribution was widespread and homogenous. Among three regions of the PRF matrices (upper, middle, and lower), no significant differences were observed. These findings suggest that platelets aggregate on polymerizing fibrin fibers and float up as a PRF matrix into the plasma fraction, amending the current "gradient" theory of platelet distribution.


Asunto(s)
Plaquetas/metabolismo , Fibrina/análisis , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leucocitos/metabolismo , Fibrina Rica en Plaquetas/metabolismo , Adulto , Anciano , Femenino , Fibrina/metabolismo , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Imagen Molecular , Espectroscopía Infrarroja Corta
4.
J Funct Biomater ; 10(3)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533279

RESUMEN

Compared with platelet-rich plasma, the preparation of platelet-rich fibrin (PRF) is simple and has not been overly modified. However, it was recently demonstrated that centrifugation conditions influence the composition of PRF and that silica microparticles from silica-coated plastic tubes can enter the PRF matrix. These factors may also modify platelet distribution. To examine these possibilities, we prepared PRF matrices using various types of blood-collection tubes (plain glass tubes and silica-containing plastic tubes) and different centrifugation speeds. The protocols of concentrated growth factors and advanced-PRF represented high- and low-speed centrifugation, respectively. Platelet distribution in the PRF matrix was examined immunohistochemically. Using low-speed centrifugation, platelets were distributed homogeneously within the PRF matrix regardless of tube types. In high-speed centrifugation, platelets were distributed mainly on one surface region of the PRF matrix in glass tubes, whereas in silica-coated tubes, platelet distribution was commonly more diffusive than in glass tubes. Therefore, both blood-collection tube types and centrifugal conditions appeared to influence platelet distribution in the PRF matrix. Platelets distributed in the deep regions of the PRF matrix may contribute to better growth factor retention and release. However, clinicians should be careful in using silica-coated tubes because their silica microparticles may be a health hazard.

5.
Dent J (Basel) ; 7(2)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163628

RESUMEN

Although platelet-rich plasma (PRP) is now widely used in regenerative medicine and dentistry, contradictory clinical outcomes have often been obtained. To minimize such differences and to obtain high quality evidence from clinical studies, the PRP preparation protocol needs to be standardized. In addition, emphasis must be placed on quality control. Following our previous spectrophotometric method of platelet counting, in this study, another simple and convenient spectrophotometric method to determine platelet aggregation activity has been developed. Citrated blood samples were collected from healthy donors and used. After centrifugation twice, platelets were suspended in phosphate buffered saline (PBS) and adenosine diphosphate (ADP)-induced aggregation was determined using a spectrophotometer at 615 nm. For validation, platelets pretreated with aspirin, an antiplatelet agent, or hydrogen peroxide (H2O2), an oxidative stress-inducing agent, were also analyzed. Optimal platelet concentration, assay buffer solution, and representative time point for determination of aggregation were found to be 50-100 × 104/µL, PBS, and 3 min after stimulation, respectively. Suppressed or injured platelets showed a significantly lower aggregation response to ADP. Therefore, it suggests that this spectrophotometric method may be useful in quick chair-side evaluation of individual PRP quality.

6.
J Biomed Mater Res B Appl Biomater ; 107(5): 1420-1430, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30270545

RESUMEN

Platelet-rich fibrin (PRF) is widely used in regenerative medicine. Nonetheless, major issues include its controversial effects on bone regeneration and a lack of quality-assured glass tubes required for coagulation. We used porous particles (FBG) comprising a recombinant RGD motif-enriched collagen I-like protein to activate the coagulation pathway and examined the effects of the resulting PRF-FBG complex on bone regeneration. Human whole-blood samples were mixed with FBG in plastic tubes and centrifuged to prepare a PRF-FBG complex. Platelet-derived growth factor-BB (PDGF-BB) levels and cell growth activity were determined by ELISA and a bioassay using osteoblasts. Bone regenerative activity was assessed using a mouse model of calvarial bone defect. FBG facilitated PRF-like matrix formation during centrifugation. In this PRF-FBG complex, the microstructure of fibrin fibers was similar to that of PRF prepared conventionally in glass tubes. PDGF-BB levels and mitogenic action were not significantly influenced by FBG. In the bone defect model, although PRF did not exert any significant positive effects on its own, in combination with FBG, it synergistically stimulated new bone formation. This study demonstrated that incorporation of FBG into whole-blood samples induces PRF formation without the aid of glass tubes. The resulting PRF-FBG complex could be a promising bone grafting material in clinical settings. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1420-1430, 2019.


Asunto(s)
Trasplante Óseo , Colágeno , Osteogénesis/efectos de los fármacos , Fibrina Rica en Plaquetas/química , Adulto , Anciano , Animales , Colágeno/química , Colágeno/farmacología , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Desnudos , Persona de Mediana Edad , Porosidad , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología
7.
Int J Implant Dent ; 4(1): 29, 2018 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-30276491

RESUMEN

BACKGROUND: Platelet-rich plasma (PRP) is widely used in regenerative dentistry and other medical fields. However, its effectiveness has often been questioned. For better evaluation, the quality of individual PRP preparations should be assured prior to use. We proposed a spectrophotometric method for determination of platelet counts and validated its applicability using two types of PRP preparations. METHODS: Blood samples were obtained from healthy male volunteers and pure PRP (P-PRP) and leukocytes-rich PRP (L-PRP) were prepared using the double-spin method. In serial dilutions, platelet counts in P-PRP and L-PRP were determined using an automated hematology analyzer and a compact spectrophotometer. For validation, P-PRP and L-PRP independently prepared by three well-trained operators were used for comparison of the calculated and measured platelet counts. RESULTS: In the two types of PRP samples evaluated, platelet counts were almost equal and greater amount of both white blood cells (WBCs) and red blood cells (RBCs) were included in L-PRP preparations. The calibration curve obtained from serially diluted P-PRP showed a strong correlation (R2 = 0.995), whereas that of L-PRP was relatively weaker (R2 = 0.975). In validation testing, the scatter plot of the calculated platelet counts versus the measured values showed a strong correlation in P-PRP (R2 = 0.671), whereas that of L-PRP showed a much weaker correlation (R2 = 0.0605). CONCLUSIONS: This method can precisely determine platelet counts in PRP preparations when the inclusion of WBCs or RBCs is minimized. Therefore, we recommend that clinicians use this method for quality assurance of individual PRP preparations.

8.
Int J Implant Dent ; 4(1): 23, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30066050

RESUMEN

BACKGROUND: Based on the notion that full activation of platelets is required for a growth factor release, in regenerative dentistry, platelet-rich plasma (PRP) in liquid form is usually clotted by addition of CaCl2 in glassware before topical implantation. However, there has been no evidence as to which is better, full or partial activation of platelets, for minimizing the loss of growth factors and improving the controlled release of growth factors from coagulated PRP. To address this matter, here, we primarily examined direct effects of CaCl2 on platelets in PBS and on coagulation in citrated PRP. METHODS: PRP was prepared from healthy volunteers' blood. Platelets' actions were monitored by scanning electron microscopy, flow cytometry, digital holographic microscopy, and immunofluorescent staining. Clot formation was examined in plasma. RESULTS: In plasma-free PBS, 0.1% CaCl2 immediately upregulated CD62P and CD63, causing a release of microparticles and fibrinogen/fibrin; consequently, platelets aggregated and adhered to polystyrene culture dishes with enlargement of their attachment area. In a clot formation assay in plasma, CaCl2 initially induced platelet aggregation, which triggered loop-like matrix formation and subsequently induced coagulation on a watch glass. Such changes were not clearly observed either with PRP in a plastic dish or in platelet-poor plasma on a watch glass: coagulation was delayed in both conditions. CONCLUSIONS: These findings indicate that besides the well-known coagulation pathway, which activates platelets via thrombin conversion in a coagulation cascade, CaCl2 directly activates platelets, which then facilitate clot formation independently and in cooperation with the coagulation pathway.

9.
Micron ; 113: 1-9, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29936304

RESUMEN

Platelet activation and aggregation have been conventionally evaluated using an aggregometer. However, this method is suitable for short-term but not long-term quantitative evaluation of platelet aggregation, morphological changes, and/or adhesion to specific materials. The recently developed digital holographic microscopy (DHM) has enabled the quantitative evaluation of cell size and morphology without labeling or destruction. Thus, we aim to validate its applicability in quantitatively evaluating changes in cell morphology, especially in the aggregation and spreading of activated platelets, thus modifying typical image analysis procedures to suit aggregated platelets. Freshly prepared platelet-rich plasma was washed with phosphate-buffered saline and treated with 0.1% CaCl2. Platelets were then fixed and subjected to DHM, scanning electron microscopy (SEM), atomic force microscopy, optical microscopy, and flow cytometry (FCM). Tightly aggregated platelets were identified as single cells. Data obtained from time-course experiments were plotted two-dimensionally according to the average optical thickness versus attachment area and divided into four regions. The majority of the control platelets, which supposedly contained small and round platelets, were distributed in the lower left region. As activation time increased, however, this population dispersed toward the upper right region. The distribution shift demonstrated by DHM was essentially consistent with data obtained from SEM and FCM. Therefore, DHM was validated as a promising device for testing platelet function given that it allows for the quantitative evaluation of activation-dependent morphological changes in platelets. DHM technology will be applicable to the quality assurance of platelet concentrates, as well as diagnosis and drug discovery related to platelet functions.


Asunto(s)
Plaquetas/fisiología , Plaquetas/ultraestructura , Holografía/métodos , Microscopía/métodos , Activación Plaquetaria , Coagulación Sanguínea , Humanos , Agregación Plaquetaria
10.
Biomedicines ; 5(3)2017 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-28926988

RESUMEN

The platelet-rich fibrin-like matrix (PRFM) is usually prepared onsite and immediately used for regenerative therapy. Nonetheless, to meet the clinical necessity of preserving the PRFM without quality deterioration, we developed a method for preparation of PRFMs from short-term-stored whole blood (WB) samples. In this study, to evaluate the practical expiration date of storage, we extended the storage time of WB samples from 2 to 7 days and assessed the quality of the resulting PRFMs. WB samples collected with acid-citrate-dextrose were stored with gentle agitation at ambient temperature. To prepare PRFMs, the stored WB samples were mixed with CaCl2 in glass tubes and centrifuged. Fibrin fiber networks, CD41 and CD62P expression, and Platelet Derived Growth Factor-BB (PDGF-BB) levels were examined by scanning electron microscopy (SEM), flow cytometry, and an Enzyme-Linked ImmunoSorbent Assay (ELISA), respectively. Long-term storage had no significant effect on either blood cell counts or platelet functions tested. The resulting PRFMs were visually identical to freshly prepared ones. PDGF-BB levels did not markedly decrease in a time-dependent manner. However, fibrin fibers gradually became thinner after storage. Although the coagulation activity may diminish, we propose that PRFMs can be prepared-without evident loss of quality-from WB samples stored for up to 7 days by our previously developed method.

11.
Int J Implant Dent ; 3(1): 17, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28466249

RESUMEN

BACKGROUND: Fibrin clot membranes prepared from advanced platelet-rich fibrin (A-PRF) or concentrated growth factors (CGF), despite their relatively rapid biodegradability, have been used as bioactive barrier membranes for alveolar bone tissue regeneration. As the membranes degrade, it is thought that the growth factors are gradually released. However, the mechanical and degradable properties of these membranes have not well been characterized. The purpose of this study was to mechanically and chemically characterize these membranes. METHODS: A-PRF and CGF clots were prepared from blood samples collected from non-smoking, healthy donors and were compressed to form 1-mm-thick membranes. Platelet-poor plasma-derived fibrin (PPTF) clots were prepared by adding bovine thrombin to platelet-poor plasma. A tensile test was performed at the speed of 1 mm/min. Morphology of the fibrin fibers was examined by SEM. A digestion test was performed in PBS containing trypsin and EDTA. RESULTS: In the tensile test, statistical difference was not observed in Young's modulus, strain at break, or maximum stress between A-PRF and CGF. In strain at break, PPTF was significantly weaker than CGF. Likewise, fibrin fiber thickness and crosslink density of PPTF were less than those of other membranes, and PPTF degraded faster than others. CONCLUSIONS: Although the centrifugal conditions are different, A-PRF and CGF are prepared by essentially identical mechanisms. Therefore, it is conceivable that both membranes have similar mechanical and chemical properties. Only PPTF, which was prepared by a different mechanism, was characterized as mechanically weaker and enzymatically more degradable.

12.
Int J Implant Dent ; 3(1): 6, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28251561

RESUMEN

BACKGROUND: In regenerative therapy, self-clotted platelet concentrates, such as platelet-rich fibrin (PRF), are generally prepared on-site and are immediately used for treatment. If blood samples or prepared clots can be preserved for several days, their clinical applicability will expand. Here, we prepared PRF from stored whole-blood samples and examined their characteristics. METHODS: Blood samples were collected from non-smoking, healthy male donors (aged 27-67 years, N = 6), and PRF clots were prepared immediately or after storage for 1-2 days. Fibrin fiber was examined by scanning electron microscopy. Bioactivity was evaluated by means of a bioassay system involving human periosteal cells, whereas PDGF-BB concentrations were determined by an enzyme-linked immunosorbent assay. RESULTS: Addition of optimal amounts of a 10% CaCl2 solution restored the coagulative ability of whole-blood samples that contained an anticoagulant (acid citrate dextrose) and were stored for up to 2 days at ambient temperature. In PRF clots prepared from the stored whole-blood samples, the thickness and cross-links of fibrin fibers were almost identical to those of freshly prepared PRF clots. PDGF-BB concentrations in the PRF extract were significantly lower in stored whole-blood samples than in fresh samples; however, both extracts had similar stimulatory effects on periosteal-cell proliferation. CONCLUSIONS: Quality of PRF clots prepared from stored whole-blood samples is not reduced significantly and can be ensured for use in regenerative therapy. Therefore, the proposed method enables a more flexible treatment schedule and choice of a more suitable platelet concentrate immediately before treatment, not after blood collection.

13.
Dent J (Basel) ; 5(1)2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29563413

RESUMEN

Platelet concentrates should be quality-assured of purity and identity prior to clinical use. Unlike for the liquid form of platelet-rich plasma, platelet counts cannot be directly determined in solid fibrin clots and are instead calculated by subtracting the counts in other liquid or semi-clotted fractions from those in whole blood samples. Having long suspected the validity of this method, we herein examined the possible loss of platelets in the preparation process. Blood samples collected from healthy male donors were immediately centrifuged for advanced platelet-rich fibrin (A-PRF) and concentrated growth factors (CGF) according to recommended centrifugal protocols. Blood cells in liquid and semi-clotted fractions were directly counted. Platelets aggregated on clot surfaces were observed by scanning electron microscopy. A higher centrifugal force increased the numbers of platelets and platelet aggregates in the liquid red blood cell fraction and the semi-clotted red thrombus in the presence and absence of the anticoagulant, respectively. Nevertheless, the calculated platelet counts in A-PRF/CGF preparations were much higher than expected, rendering the currently accepted subtraction method inaccurate for determining platelet counts in fibrin clots. To ensure the quality of solid types of platelet concentrates chairside in a timely manner, a simple and accurate platelet-counting method should be developed immediately.

14.
Int J Implant Dent ; 2(1): 19, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27747711

RESUMEN

BACKGROUND: The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). METHODS: PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-ß1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1ß, IL-6) were determined using ELISA kits. RESULTS: Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. CONCLUSIONS: These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

15.
Clin Exp Dent Res ; 2(2): 96-103, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29744155

RESUMEN

Platelet-rich plasma (PRP) is widely used in regenerative medicine because of its high concentrations of various growth factors and platelets. However, the distribution of blood cell components has not been investigated in either PRP or other PRP derivatives. In this study, we focused on plasma rich in growth factors (PRGF), a PRP derivative, and analyzed the distributions of platelets and white blood cells (WBCs). Peripheral blood samples were collected from healthy volunteers (N = 14) and centrifuged to prepare PRGF and PRP. Blood cells were counted using an automated hematology analyzer. The effects of PRP and PRGF preparations on cell proliferation were determined using human periosteal cells. In the PRGF preparations, both red blood cells and WBCs were almost completely eliminated, and platelets were concentrated by 2.84-fold, whereas in the PRP preparations, both platelets and WBCs were similarly concentrated by 8.79- and 5.51-fold, respectively. Platelet counts in the PRGF preparations were positively correlated with platelet counts in the whole blood samples, while the platelet concentration rate was negatively correlated with red blood cell counts in the whole blood samples. In contrast, platelet counts and concentration rates in the PRP preparations were significantly influenced by WBC counts in whole blood samples. The PRP preparations, but not the PRGF preparations, significantly suppressed cell growth at higher doses in vitro. Therefore, these results suggest that PRGF preparations can clearly be distinguished from PRP preparations by both inclusion of WBCs and dose-dependent stimulation of periosteal cell proliferation in vitro.

16.
Lasers Med Sci ; 24(1): 13-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18049794

RESUMEN

Recently, we modified laser surgery for superficial lesions in the oral cavity by using submucosal glycerol injection. This procedure was based on a technique for endoscopic mucosal resection (EMR) in the gastrointestinal tract. The aim of this study was to evaluate the effectiveness of the modified laser surgery assisted by a submucosal glycerol injection. Eleven superficial oral lesions in ten patients were treated with diode laser (continuous wave mode, 3 W) after a submucosal injection of glycerol solution. Injection of glycerol solution created mucosal expansion, which enabled the procedures to be done without bleeding, over cutting, over coagulation and unintended irradiation. The surface of the wounds showed little carbonization, resulting in good healing. Submucosal glycerol injection for laser treatment in the oral cavity is a promising technique for treating superficial oral lesions by virtue of less invasion and good results.


Asunto(s)
Glicerol/administración & dosificación , Terapia por Láser/métodos , Enfermedades de la Boca/cirugía , Anciano , Femenino , Humanos , Inyecciones , Masculino , Persona de Mediana Edad , Mucosa Bucal , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...