Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37111908

RESUMEN

Wild relatives of crops have the potential to improve food crops, especially in terms of improving abiotic stress tolerance. Two closely related wild species of the traditional East Asian legume crops, Azuki bean (Vigna angularis), V. riukiuensis "Tojinbaka" and V. nakashimae "Ukushima" were shown to have much higher levels of salt tolerance than azuki beans. To identify the genomic regions responsible for salt tolerance in "Tojinbaka" and "Ukushima", three interspecific hybrids were developed: (A) azuki bean cultivar "Kyoto Dainagon" × "Tojinbaka", (B) "Kyoto Dainagon" × "Ukushima" and (C) "Ukushima" × "Tojinbaka". Linkage maps were developed using SSR or restriction-site-associated DNA markers. There were three QTLs for "percentage of wilt leaves" in populations A, B and C, while populations A and B had three QTLs and population C had two QTLs for "days to wilt". In population C, four QTLs were detected for Na+ concentration in the primary leaf. Among the F2 individuals in population C, 24% showed higher salt tolerance than both wild parents, suggesting that the salt tolerance of azuki beans can be further improved by combining the QTL alleles of the two wild relatives. The marker information would facilitate the transfer of salt tolerance alleles from "Tojinbaka" and "Ukushima" to azuki beans.

2.
PLoS One ; 15(7): e0235896, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32730265

RESUMEN

Mature sorghum herbage is known to contain several water-soluble secondary metabolites (allelochemicals). In this study, we investigated quantitative trait loci (QTLs) associated with allelochemical characteristics in sorghum using linkage mapping and linkage disequilibrium (LD)-based association mapping. A sorghum diversity research set (SDRS) of 107 accessions was used in LD mapping whereas, F2:3 lines derived from a cross between Japanese and African landraces were used in linkage mapping. The QTLs were further confirmed by positional (targeted) association mapping with Q+K model. The inhibitory effect of water-soluble extracts (WSE) was tested on germination and root length of lettuce seedlings in four concentrations (25%, 50%, 75% and 100%). A Significant range of variations was observed among genotypes in both types of mapping populations (P < 0.05). A total of 181 simple sequence repeats (SSRs) derived from antecedently reported map have been used for genotyping of SDRS. A genetic linkage map of 151 sorghum SSR markers was also developed on 134 F2 individuals. The total map length was 1359.3 cM, with an average distance of 8.2 cM between adjacent markers. LD mapping identified three QTLs for inhibition effect on germination and seven QTLs for root length of lettuce seedlings. Whereas, a total of six QTLs for inhibition of germination and ten QTLs for root length were detected in linkage mapping approach. The percent phenotypic variation explained by individual QTL ranged from 6.9% to 27.3% in SDRS and 9.9% to 35.6% in F2:3 lines. Regional association analysis identified four QTLs, three of them are common in other methods too. No QTL was identified in the region where major gene for sorgoleone (SOR1) has been cloned previously on chromosome 5.


Asunto(s)
Sitios de Carácter Cuantitativo , Sorghum/genética , Ligamiento Genético , Germinación/genética , Repeticiones de Microsatélite , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantones/genética , Plantones/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo , Sorghum/fisiología
3.
Breed Sci ; 64(4): 378-88, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25914593

RESUMEN

Two hundred ninety-six Asian barley (Hordeum vulgare L.) accessions were assessed to detect QTLs underlying salt tolerance by association analysis using a 384 single nucleotide polymorphism (SNP) marker system. The experiment was laid out at the seedling stage in a hydroponic solution under control and 250 mM NaCl solution with three replications of four plants each. Salt tolerance was assessed by leaf injury score (LIS) and salt tolerance indices (STIs) of the number of leaves (NL), shoot length (SL), root length (RL), shoot dry weight (SDW) and root dry weight (RDW). LIS was scored from 1 to 5 according to the severity of necrosis and chlorosis observed on leaves. There was a wide variation in salt tolerance among Asian barley accessions. LIS and STI (SDW) were the most suitable traits for screening salt tolerance. Association was estimated between markers and traits to detect QTLs for LIS and STI (SDW). Seven significant QTLs were located on chromosomes 1H (2 QTLs), 2H (2 QTLs), 3H (1 QTL), 4H (1 QTL) and 5H (1 QTL). Five QTLs were associated with LIS and 2 QTLs with STI (SDW). Two QTLs associated with LIS were newly identified on chromosomes 3H and 4H.

4.
Nat Genet ; 45(9): 1097-102, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913002

RESUMEN

The genetic improvement of drought resistance is essential for stable and adequate crop production in drought-prone areas. Here we demonstrate that alteration of root system architecture improves drought avoidance through the cloning and characterization of DEEPER ROOTING 1 (DRO1), a rice quantitative trait locus controlling root growth angle. DRO1 is negatively regulated by auxin and is involved in cell elongation in the root tip that causes asymmetric root growth and downward bending of the root in response to gravity. Higher expression of DRO1 increases the root growth angle, whereby roots grow in a more downward direction. Introducing DRO1 into a shallow-rooting rice cultivar by backcrossing enabled the resulting line to avoid drought by increasing deep rooting, which maintained high yield performance under drought conditions relative to the recipient cultivar. Our experiments suggest that control of root system architecture will contribute to drought avoidance in crops.


Asunto(s)
Sequías , Genes de Plantas , Oryza/crecimiento & desarrollo , Oryza/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Adaptación Biológica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Orden Génico , Genotipo , Datos de Secuencia Molecular , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/citología
5.
Breed Sci ; 62(2): 151-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23136526

RESUMEN

Due to its critical importance in crop yield, the photoperiodic regulation of flowering time is considered an important trait in sorghum breeding programs. In this study, quantitative trait loci for flowering time were detected using an F(2) population derived from a cross between Kikuchi Zairai, a late-flowering cultivar originating from Japan and SC112, an early-flowering cultivar originating from Ethiopia. F(2) plants were grown with their parents under a natural day length and a 12 h day length. Two linkage maps were constructed using 213 simple sequence repeats markers. Nine quantitative trait loci controlling flowering time were identified in F(2) plants grown under a natural day length, whereas 7 QTLs were identified under a 12 h day length. Five QTLs controlling flowering time were shared under both of the day length conditions.

6.
J Exp Bot ; 62(8): 2485-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21212298

RESUMEN

Developing a deep root system is an important strategy for avoiding drought stress in rice. Using the 'basket' method, the ratio of deep rooting (RDR; the proportion of total roots that elongated through the basket bottom) was calculated to evaluate deep rooting. A new major quantitative trait locus (QTL) controlling RDR was detected on chromosome 9 by using 117 recombinant inbred lines (RILs) derived from a cross between the lowland cultivar IR64, with shallow rooting, and the upland cultivar Kinandang Patong (KP), with deep rooting. This QTL explained 66.6% of the total phenotypic variance in RDR in the RILs. A BC(2)F(3) line homozygous for the KP allele of the QTL had an RDR of 40.4%, compared with 2.6% for the homozygous IR64 allele. Fine mapping of this QTL was undertaken using eight BC(2)F(3) recombinant lines. The RDR QTL Dro1 (Deeper rooting 1) was mapped between the markers RM24393 and RM7424, which delimit a 608.4 kb interval in the reference cultivar Nipponbare. To clarify the influence of Dro1 in an upland field, the root distribution in different soil layers was quantified by means of core sampling. A line homozygous for the KP allele of Dro1 (Dro1-KP) and IR64 did not differ in root dry weight in the shallow soil layers (0-25 cm), but root dry weight of Dro1-KP in deep soil layers (25-50 cm) was significantly greater than that of IR64, suggesting that Dro1 plays a crucial role in increased deep rooting under upland field conditions.


Asunto(s)
Agricultura , Oryza/genética , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo/genética , Biomasa , Cromosomas de las Plantas/genética , ADN de Plantas/genética , Marcadores Genéticos , Genotipo , Homocigoto , Endogamia , Mapeo Físico de Cromosoma , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Recombinación Genética/genética , Reproducibilidad de los Resultados , Suelo
7.
Breed Sci ; 61(4): 394-404, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23136477

RESUMEN

Photoperiod sensitivity is an important trait related to crop adaptation and ecological breeding in common buckwheat (Fagopyrum esculentum Moench). Although photoperiod sensitivity in this species is thought to be controlled by quantitative trait loci (QTLs), no genes or regions related to photoperiod sensitivity had been identified until now. Here, we identified QTLs controlling photoperiod sensitivity by QTL analysis in a segregating F(4) population (n = 100) derived from a cross of two autogamous lines, 02AL113(Kyukei SC2)LH.self and C0408-0 RP. The F(4) progenies were genotyped with three markers for photoperiod-sensitivity candidate genes, which were identified based on homology to photoperiod-sensitivity genes in Arabidopsis and 76 expressed sequence tag markers. Among the three photoperiod-sensitivity candidate genes (FeCCA1, FeELF3 and FeCOL3) identified in common buckwheat, FeELF3 was associated with photoperiod sensitivity. Two EST regions, Fest_L0606_4 and Fest_L0337_6, were associated with photoperiod sensitivity and explained 20.0% and 14.2% of the phenotypic variation, respectively. For both EST regions, the allele from 02AL113(Kyukei SC2)LH.self led to early flowering. An epistatic interaction was also confirmed between Fest_L0606_4 and Fest_L0337_6. These results demonstrate that photoperiod sensitivity in common buckwheat is controlled by a pathway consisting of photoperiod-sensitivity candidate genes as well as multiple gene action.

8.
Science ; 325(5943): 998-1001, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19696351

RESUMEN

Blast disease is a devastating fungal disease of rice, one of the world's staple foods. Race-specific resistance to blast disease has usually not been durable. Here, we report the cloning of a previously unknown type of gene that confers non-race-specific resistance and its successful use in breeding. Pi21 encodes a proline-rich protein that includes a putative heavy metal-binding domain and putative protein-protein interaction motifs. Wild-type Pi21 appears to slow the plant's defense responses, which may support optimization of defense mechanisms. Deletions in its proline-rich motif inhibit this slowing. Pi21 is separable from a closely linked gene conferring poor flavor. The resistant pi21 allele, which is found in some strains of japonica rice, could improve blast resistance of rice worldwide.


Asunto(s)
Inmunidad Innata/genética , Magnaporthe/patogenicidad , Oryza/genética , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Mapeo Cromosómico , Clonación Molecular , Genes de Plantas , Variación Genética , Haplotipos , Datos de Secuencia Molecular , Oryza/metabolismo , Filogenia , Proteínas de Plantas/química , Prolina/análisis , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Sitios de Carácter Cuantitativo , Eliminación de Secuencia , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...