Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 2986-2989, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824309

RESUMEN

We demonstrate a versatile dual-wavelength synchronous mode-locking of a diode-pumped Cr:LiSAF laser for the first time, to our knowledge. A two-color mode-locked operation is achieved by using intracavity birefringent filters (BRFs) or etalons as frequency-selective elements. Using filters with different thicknesses and hence different free spectral ranges (FSRs), wavelength separation in two-color mode-locking could be selected between 1 and 9 nm, with corresponding beating frequencies in the 0.4-3.5 THz range. Moreover, the central wavelength of the two-color output could be tuned smoothly between 840 and 875 nm, only limited by the bandwidth of the semiconductor saturable absorber mirror (SESAM) used for mode-locking. The method, which enables easy adjustment of the central wavelength and beating frequency of a dual-wavelength operation, is suitable for use in other laser gain media as well.

2.
Opt Express ; 32(9): 15555-15564, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859203

RESUMEN

We report femtosecond pulse generation at GHz repetition rates with the Yb:YLF gain medium for the first time. A simple, low-cost, and compact architecture is implemented for the potential usage of the system as a low-noise timing jitter source. The system is pumped by 250 mW, 960 nm single-mode diodes from both sides. The semiconductor saturable absorber mirror (SESAM) mode-locked laser is self-starting and generates transform-limited 210 fs long pulses near 1050 nm. The laser's average output power is 40 mW, corresponding to a pulse energy of 36 pJ at 1.1 GHz repetition rate. The measured laser relative intensity noise (RIN) from 1 Hz to 1 MHz is 0.42%. The performance obtained in this initial work is limited by the specifications of the available optics and could be improved significantly by employing custom-designed optical elements.

3.
Appl Opt ; 63(4): 1144-1152, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437413

RESUMEN

In this work, we have investigated the continuous-wave (cw) lasing potential of thin slab-shaped Cr:LiCAF crystals with a low chromium doping level of around 1% and various lengths of 1 to 2 cm. These relatively long crystals with low Cr-doping facilitate the distribution of heat load in a larger volume and could enable power scaling of Cr:LiCAF lasers. However, long crystals tend to have larger passive losses, and it is also more challenging to achieve efficient mode-matching to the low-brightness pump mode in a longer gain element, which could hinder laser performance. To explore the issue, we have performed detailed cw lasing experiments in single- and multimode diode-pumped Cr:LiCAF laser systems employing crystals with different doping and length. Our results showed that current state-of-the-art crystal growth methods provide Cr:LiCAF crystals with low enough passive losses to enable cw laser efficiencies of up to 50%, even in these long samples. The pump powers available in this study (5.35 W) limited the cw powers we could achieve experimentally to 2.25 W level; however, our simulations indicate that thin slab-type Cr:LiCAF crystals with low Cr-doping have the potential to achieve cw powers above 10 W level.

4.
Appl Opt ; 61(36): 10735-10743, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36606933

RESUMEN

We studied the two-color lasing performance of a Cr:LiCAF laser using crystal quartz on-surface and off-surface optical axis birefringent filters (BRFs). Four different on-surface optical axis BRFs with thicknesses of 2 mm, 4 mm, 8 mm, and 16 mm, and three different off-surface optical axis BRFs with a diving angle of 25° and thicknesses of 2 mm, 4 mm, and 8 mm have been tested. Two-color lasing operation could be achieved in tens of different pairs of wavelengths using both types of BRFs. Regular on-surface optical axis BRFs provided two-color lasing in the 772-810 nm interval, with a discretely tunable wavelength separation of 1 to 37 nm (0.5 to 17 THz). In comparison, the off-surface optical axis BRFs enabled scanning of two-color lasing spectra in a much broader wavelength range between 745 nm and 850 nm with a discretely tunable wavelength separation of 0.8 to 99 nm (0.4 to 46 THz). The results clearly demonstrate the advantages of using off-surface optical axis BRFs to achieve two-color lasing with broadly tunable wavelength separation.

5.
Entropy (Basel) ; 22(4)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33286161

RESUMEN

Neuronal noise is a major factor affecting the communication between coupled neurons. In this work, we propose a statistical toolset to infer the coupling between two neurons under noise. We estimate these statistical dependencies from data which are generated by a coupled Hodgkin-Huxley (HH) model with additive noise. To infer the coupling using observation data, we employ copulas and information-theoretic quantities, such as the mutual information (MI) and the transfer entropy (TE). Copulas and MI between two variables are symmetric quantities, whereas TE is asymmetric. We demonstrate the performances of copulas and MI as functions of different noise levels and show that they are effective in the identification of the interactions due to coupling and noise. Moreover, we analyze the inference of TE values between neurons as a function of noise and conclude that TE is an effective tool for finding out the direction of coupling between neurons under the effects of noise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA