Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
2.
J Clin Invest ; 134(5)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227370

RESUMEN

Two coding variants of apolipoprotein L1 (APOL1), called G1 and G2, explain much of the excess risk of kidney disease in African Americans. While various cytotoxic phenotypes have been reported in experimental models, the proximal mechanism by which G1 and G2 cause kidney disease is poorly understood. Here, we leveraged 3 experimental models and a recently reported small molecule blocker of APOL1 protein, VX-147, to identify the upstream mechanism of G1-induced cytotoxicity. In HEK293 cells, we demonstrated that G1-mediated Na+ import/K+ efflux triggered activation of GPCR/IP3-mediated calcium release from the ER, impaired mitochondrial ATP production, and impaired translation, which were all reversed by VX-147. In human urine-derived podocyte-like epithelial cells (HUPECs), we demonstrated that G1 caused cytotoxicity that was again reversible by VX-147. Finally, in podocytes isolated from APOL1 G1 transgenic mice, we showed that IFN-γ-mediated induction of G1 caused K+ efflux, activation of GPCR/IP3 signaling, and inhibition of translation, podocyte injury, and proteinuria, all reversed by VX-147. Together, these results establish APOL1-mediated Na+/K+ transport as the proximal driver of APOL1-mediated kidney disease.


Asunto(s)
Apolipoproteína L1 , Enfermedades Renales , Compuestos Organotiofosforados , Ratones , Animales , Humanos , Apolipoproteína L1/genética , Células HEK293 , Variación Genética , Enfermedades Renales/genética , Ratones Transgénicos
5.
BMC Infect Dis ; 22(1): 591, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787257

RESUMEN

BACKGROUND: Microalbuminuria is an independent risk factor for cardiovascular and kidney disease and a predictor of end organ damage, both in the general population and in persons with HIV (PWH). Microalbuminuria is also an important risk factor for mortality in PWH treated with antiretroviral therapy (ART). In the ongoing Renal Risk Reduction (R3) study in Nigeria, we identified a high prevalence of microalbuminuria confirmed by two measurements 4-8 weeks apart in ART-experienced, virologically suppressed PWH. Although Stage 1 or 2 hypertension and exposure to potentially nephrotoxic antiretroviral medications were common in R3 participants, other traditional risk factors for albuminuria and kidney disease, including diabetes, APOL1 high-risk genotype, and smoking were rare. Co-infection with endemic pathogens may also be significant contributors to albuminuria, but co-infections were not evaluated in the R3 study population. METHODS: In Aim 1, we will cross-sectionally compare the prevalence of albuminuria and established kidney disease risk factors in a cohort of PWH to age- and sex-matched HIV-negative adults presenting for routine care at the Aminu Kano Teaching Hospital in Kano, Nigeria. We will leverage stored specimens from 2500 R3 participants and enroll an additional 500 PLWH recently initiated on ART (≤ 24 months) and 750 age- and sex-matched HIV-negative adults to determine the contribution of HIV, hypertension, and other comorbid medical conditions to prevalent albuminuria. In Aim 2, we will follow a cohort of 1000 HIV-positive, ART-treated and 500 HIV-negative normoalbuminuric adults for 30 months to evaluate the incidence and predictors of albuminuria. DISCUSSION: The findings from this study will support the development of interventions to prevent or address microalbuminuria in PWH to reduce kidney and cardiovascular morbidity and mortality. Such interventions might include more intensive monitoring and treatment of traditional risk factors, the provision of renin-angiotensin aldosterone system or sodium-glucose cotransporter-2 inhibitors, consideration of changes in ART regimen, and screening and treatment for relevant co-infections.


Asunto(s)
Coinfección , Diabetes Mellitus Tipo 2 , Infecciones por VIH , Hipertensión , Enfermedades Renales , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Adulto , Albuminuria/epidemiología , Albuminuria/etiología , Apolipoproteína L1 , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Hipertensión/complicaciones , Hipertensión/epidemiología , Nigeria/epidemiología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
6.
JCI Insight ; 7(11)2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35472001

RESUMEN

COVID-19 infection causes collapse of glomerular capillaries and loss of podocytes, culminating in a severe kidney disease called COVID-19-associated nephropathy (COVAN). The underlying mechanism of COVAN is unknown. We hypothesized that cytokines induced by COVID-19 trigger expression of pathogenic APOL1 via JAK/STAT signaling, resulting in podocyte loss and COVAN phenotype. Here, based on 9 biopsy-proven COVAN cases, we demonstrated for the first time, to the best of our knowledge, that APOL1 protein was abundantly expressed in podocytes and glomerular endothelial cells (GECs) of COVAN kidneys but not in controls. Moreover, a majority of patients with COVAN carried 2 APOL1 risk alleles. We show that recombinant cytokines induced by SARS-CoV-2 acted synergistically to drive APOL1 expression through the JAK/STAT pathway in primary human podocytes, GECs, and kidney micro-organoids derived from a carrier of 2 APOL1 risk alleles, but expression was blocked by a JAK1/2 inhibitor, baricitinib. We demonstrate that cytokine-induced JAK/STAT/APOL1 signaling reduced the viability of kidney organoid podocytes but was rescued by baricitinib. Together, our results support the conclusion that COVID-19-induced cytokines are sufficient to drive COVAN-associated podocytopathy via JAK/STAT/APOL1 signaling and that JAK inhibitors could block this pathogenic process. These findings suggest JAK inhibitors may have therapeutic benefits for managing cytokine-induced, APOL1-mediated podocytopathy.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Citocinas , Inhibidores de las Cinasas Janus , Enfermedades Renales , Apolipoproteína L1/genética , Azetidinas/farmacología , COVID-19/metabolismo , Citocinas/metabolismo , Células Endoteliales/metabolismo , Humanos , Inhibidores de las Cinasas Janus/farmacología , Quinasas Janus/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/virología , Organoides/metabolismo , Purinas/farmacología , Pirazoles/farmacología , SARS-CoV-2/aislamiento & purificación , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología
8.
Kidney Int ; 100(1): 19-21, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34154709

RESUMEN

Apolipoprotein L1 (APOL1) high-risk genotypes strongly associate with HIV-associated nephropathy, and antiretroviral therapy reduces the incidence of HIV-associated nephropathy and progression to end-stage kidney disease. Wudil et al. report cross-sectional APOL1 associations with proteinuria and estimated glomerular filtration rate in a northern Nigerian sample with HIV infection on antiretroviral therapy. Multiple ethnic groups with different APOL1 risk variant frequencies were included. Overall, APOL1 was associated with proteinuric chronic kidney disease; however, relationships with underlying causes of nephropathy and progression rates require further study.


Asunto(s)
Apolipoproteína L1 , Infecciones por VIH , Adulto , Apolipoproteína L1/genética , Apolipoproteínas/genética , Estudios Transversales , Genotipo , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Humanos , Riñón , Lipoproteínas HDL/genética , Nigeria , Fenotipo
9.
J Am Soc Nephrol ; 32(7): 1765-1778, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33853887

RESUMEN

BACKGROUND: APOL1 variants contribute to the markedly higher incidence of ESKD in Blacks compared with Whites. Genetic testing for these variants in patients with African ancestry who have nephropathy is uncommon, and no specific treatment or management protocol for APOL1-associated nephropathy currently exists. METHODS: A multidisciplinary, racially diverse group of 14 experts and patient advocates participated in a Delphi consensus process to establish practical guidance for clinicians caring for patients who may have APOL1-associated nephropathy. Consensus group members took part in three anonymous voting rounds to develop consensus statements relating to the following: (1) counseling, genotyping, and diagnosis; (2) disease awareness and education; and (3) a vision for management of APOL1-associated nephropathy in a future when treatment is available. A systematic literature search of the MEDLINE and Embase databases was conducted to identify relevant evidence published from January 1, 2009 to July 14, 2020. RESULTS: The consensus group agreed on 55 consensus statements covering such topics as demographic and clinical factors that suggest a patient has APOL1-associated nephropathy, as well as key considerations for counseling, testing, and diagnosis in current clinical practice. They achieved consensus on the need to increase awareness among key stakeholders of racial health disparities in kidney disease and of APOL1-associated nephropathy and on features of a successful education program to raise awareness among the patient community. The group also highlighted the unmet need for a specific treatment and agreed on best practice for management of these patients should a treatment become available. CONCLUSIONS: A multidisciplinary group of experts and patient advocates defined consensus-based guidance on the care of patients who may have APOL1-associated nephropathy.

10.
J Am Soc Nephrol ; 31(9): 2083-2096, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32675303

RESUMEN

BACKGROUND: Two coding renal risk variants (RRVs) of the APOL1 gene (G1 and G2) are associated with large increases in CKD rates among populations of recent African descent, but the underlying molecular mechanisms are unknown. Mammalian cell culture models are widely used to study cytotoxicity of RRVs, but results have been contradictory. It remains unclear whether cytotoxicity is RRV-dependent or driven solely by variant-independent overexpression. It is also unknown whether expression of the reference APOL1 allele, the wild-type G0, could prevent cytotoxicity of RRVs. METHODS: We generated tetracycline-inducible APOL1 expression in human embryonic kidney HEK293 cells and examined the effects of increased expression of APOL1 (G0, G1, G2, G0G0, G0G1, or G0G2) on known cytotoxicity phenotypes, including reduced viability, increased swelling, potassium loss, aberrant protein phosphorylation, and dysregulated energy metabolism. Furthermore, whole-genome transcriptome analysis examined deregulated canonical pathways. RESULTS: At moderate expression, RRVs but not G0 caused cytotoxicity in a dose-dependent manner that coexpression of G0 did not reduce. RRVs also have dominant effects on canonical pathways relevant for the cellular stress response. CONCLUSIONS: In HEK293 cells, RRVs exhibit a dominant toxic gain-of-function phenotype that worsens with increasing expression. These observations suggest that high steady-state levels of RRVs may underlie cellular injury in APOL1 nephropathy, and that interventions that reduce RRV expression in kidney compartments may mitigate APOL1 nephropathy.


Asunto(s)
Apolipoproteína L1/genética , Apolipoproteína L1/fisiología , Supervivencia Celular , Metabolismo Energético , Perfilación de la Expresión Génica , Variación Genética , Células HEK293 , Humanos , Potasio/metabolismo , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología
11.
Semin Nephrol ; 37(6): 546-551, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29110762

RESUMEN

Apolipoprotein L1 (APOL1) protein is the human serum factor that protect human beings against Trypanosoma brucei brucei, the cause of trypanosomiasis. Subspecies of T b brucei that cause human sleeping sickness-T b gambiense and T b rhodesiense evolved molecular mechanisms that enabled them to evade killing by APOL1. Sequence changes (termed G1 and G2) in the APOL1 gene that restored its ability to kill T b rhodesiense also increase the risk of developing glomerular diseases and accelerate progression to end-stage kidney disease. To lyse trypanosome parasites, APOL1 forms pores in the trypanosome endolysosomal and mitochondrial membranes, resulting in rapid membrane depolarization. However, the molecular mechanism underlying APOL1 nephropathy is unknown. Recent experimental evidence has shown that aberrant efflux of intracellular potassium is an early event in APOL1-induced death of human embryonic kidney cells. Here, we discuss the possibility that abnormal efflux of cellular potassium or other cations may be relevant to the pathogenesis of APOL1 nephropathy.


Asunto(s)
Apolipoproteína L1/genética , Muerte Celular/genética , Transporte Iónico/genética , Enfermedades Renales/genética , Animales , Células HEK293 , Humanos , Canales Iónicos , Mutación , Podocitos , Potasio/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(4): 830-7, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26699492

RESUMEN

Two specific genetic variants of the apolipoprotein L1 (APOL1) gene are responsible for the high rate of kidney disease in people of recent African ancestry. Expression in cultured cells of these APOL1 risk variants, commonly referred to as G1 and G2, results in significant cytotoxicity. The underlying mechanism of this cytotoxicity is poorly understood. We hypothesized that this cytotoxicity is mediated by APOL1 risk variant-induced dysregulation of intracellular signaling relevant for cell survival. To test this hypothesis, we conditionally expressed WT human APOL1 (G0), the APOL1 G1 variant, or the APOL1 G2 variant in human embryonic kidney cells (T-REx-293) using a tetracycline-mediated (Tet-On) system. We found that expression of either G1 or G2 APOL1 variants increased apparent cell swelling and cell death compared with G0-expressing cells. These manifestations of cytotoxicity were preceded by G1 or G2 APOL1-induced net efflux of intracellular potassium as measured by X-ray fluorescence, resulting in the activation of stress-activated protein kinases (SAPKs), p38 MAPK, and JNK. Prevention of net K(+) efflux inhibited activation of these SAPKs by APOL1 G1 or G2. Furthermore, inhibition of SAPK signaling and inhibition of net K(+) efflux abrogated cytotoxicity associated with expression of APOL1 risk variants. These findings in cell culture raise the possibility that nephrotoxicity of APOL1 risk variants may be mediated by APOL1 risk variant-induced net loss of intracellular K(+) and subsequent induction of stress-activated protein kinase pathways.


Asunto(s)
Apolipoproteínas/genética , Transporte Iónico/genética , Enfermedades Renales/genética , Lipoproteínas HDL/genética , Proteínas Quinasas Activadas por Mitógenos/fisiología , Mutación Missense , Potasio/metabolismo , Sustitución de Aminoácidos , Apolipoproteína L1 , Apolipoproteínas/fisiología , Población Negra/genética , Muerte Celular , Tamaño de la Célula , Receptor gp130 de Citocinas/biosíntesis , Receptor gp130 de Citocinas/genética , Progresión de la Enfermedad , Activación Enzimática , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Enfermedades Renales/etnología , Lipoproteínas HDL/fisiología , Sistema de Señalización de MAP Quinasas , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/metabolismo , Riesgo , Factor de Transcripción STAT3/metabolismo , Transfección
13.
Methods Mol Biol ; 780: 47-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21870253

RESUMEN

The enzymatic function of poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) is central to many of its function as a component of DNA repair machinery, modulator of gene transcription, and cell differentiation. While the auto-modification domain of PARP has been shown to be a primary acceptor site of poly-ADP ribose (pADPr), other DNA binding nuclear proteins are also modified by pADPr. It is -generally accepted that pADPr polymer is built upon the carboxyl side chain of specific Glu, Asp, and/or Lys residues within the target protein. Identification of the unique amino acid acceptors of pADPr in these nuclear proteins is an active area of study. Because of the heterogeneity of pADPr chain on modified -protein targets, the resulting modified proteins have unpredictable final masses, making it difficult to -identify acceptor amino acids. Using recombinant proteins, in vitro pADP ribosylation assay and mass spectrometry, we have been able to identify conserved Glu residue in transcription factor NFAT that is enzymatically modified in vitro with pADPr by PARP-1. We discuss this protocol here as a model approach for identifying pADPr acceptors in other nuclear proteins.


Asunto(s)
Poli Adenosina Difosfato Ribosa/metabolismo , Espectrometría de Masas , Factores de Transcripción NFATC/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Procesamiento Proteico-Postraduccional
14.
Mol Cell Biol ; 28(9): 2860-71, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18299389

RESUMEN

ADP-ribosylation is a reversible posttranslational modification mediated by poly-ADP-ribose polymerase (PARP). The results of recent studies demonstrate that ADP-ribosylation contributes to transcription regulation. Here, we report that transcription factor NFAT binds to and is ADP-ribosylated by PARP-1 in an activation-dependent manner. Mechanistically, ADP-ribosylation increases NFAT DNA binding. Functionally, NFAT-mediated interleukin-2 (IL-2) expression was reduced in T cells upon genetic ablation or pharmacological inhibition of PARP-1. Parp-1(-/-) T cells also exhibit reduced expression of other NFAT-dependent cytokines, such as IL-4. Together, these results demonstrate that ADP-ribosylation mediated by PARP-1 provides a molecular switch to positively regulate NFAT-dependent cytokine gene transcription. These results also imply that, similar to the effect of calcineurin inhibition, PARP-1 inhibition may be beneficial in modulating immune functions.


Asunto(s)
Factores de Transcripción NFATC/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Chlorocebus aethiops , Fibroblastos/metabolismo , Interleucina-2/biosíntesis , Interleucina-4/biosíntesis , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Transducción de Señal , Linfocitos T/metabolismo , Activación Transcripcional
15.
Artículo en Inglés | MEDLINE | ID: mdl-15093963

RESUMEN

It is well known that cocaine's psychomotor stimulant properties derive from enhanced monoamines via synaptic transporter/reuptake inhibition and release mechanisms. However, to further understand mechanisms of action for cocaine, which may be receptor-related, ketanserin, a selective 5-HT(2A/2C) antagonist was used to ascertain a possible mediation for 5-HT(2A//2C) receptors in the monoamine and behavioral responses to cocaine. The studies were performed in the freely moving and behaving animal with In Vivo Microvoltammetry. Miniature carbon sensors, BRODERICK PROBE microelectrodes detected dopamine (DA) and serotonin (5-HT) concentrations in Nucleus Accumbens (NAcc) of male, Sprague-Dawley laboratory rats in separate signals and within seconds while at the same time, locomotor behavior was monitored with infrared photobeams. Synaptic release of each monoamine was detected because separate studies showed that the depolarization blocker, gamma-butyrolactone (gamma BL), decreased steady-state values [Pharmacol. Biochem. Behav. 40 (1991) 969]. Acute studies (Day 1) were performed; the animals received single injection of drug(s) in the faradaic behavioral chamber after a stable baseline during habituation behavior was achieved. After completion of the study, the animals were returned to their home cages. Subacute studies (Day 2) were also performed; these took place 24 h later in the faradaic behavioral chamber; same animal control was used and no further drug was administered. Day 2 data were compared to baseline (habituation data) on Day 1. Results showed that (1) Acute administration of Cocaine (10 mg/kg, i.p.) (N=5) increased DA and 5-HT release above baseline (p<0.001) while locomotion was also increased above baseline (p<0.001). (2) In Subacute studies in the cocaine group, when no further drug was administered, DA release decreased (p<0.001) and decreases in 5-HT release also occurred throughout the time course (p<0.05). Locomotor behavior increased above baseline and showed a trend toward statistical significance (p<0.07). (3) Acute administration of Ketanserin/Cocaine (3 mg/kg s.c. and 10 mg/kg i.p., respectively) (N=6) showed that ketanserin antagonized DA and 5-HT release (p<0.001), while locomotion was antagonized as well (p<0.001). (4) In Subacute studies, in the ketanserin/cocaine group, when no further drug was administered, DA decreased (p<0.001), but 5-HT increased (p<0.001), while locomotor activity increased above baseline and a trend toward statistical significance was seen (p<0.07). Additional saline controls were without effect (p>0.05). In summary, Acute studies showed that cocaine produced its psychostimulant responses on monoamines and behavior and ketanserin antagonized these responses, likely via a 5-HT(2A/2C) receptor mediation. Presynaptic and postsynaptic responses were not distinguished, suggesting, in addition, a role for 5-HT-ergic modulation of DA, likely DA(2) postsynaptic modulation Subacute cocaine studies showed that on Day 2, deficiencies in monoamines occurred, reflecting cocaine withdrawal mechanisms neurochemically, while locomotor behavior did not show such dramatic deficiencies. Indeed, behavior increased above baseline. Moreover, ketanserin reversed 5-HT-related and not DA-related cocaine monoamine responses, while locomotion continued to be insignificantly increased above baseline as was seen in the Subacute cocaine group. The data suggest that presynaptic 5-HT(2A/2C) receptor mechanisms may be important during withdrawal from single injection of cocaine.


Asunto(s)
Monoaminas Biogénicas/metabolismo , Cocaína/farmacología , Ketanserina/farmacología , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Receptor de Serotonina 5-HT2A/efectos de los fármacos , Receptor de Serotonina 5-HT2C/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Animales , Calibración , Dopamina/metabolismo , Electrofisiología , Masculino , Microelectrodos , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...