Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
2.
Microbiol Spectr ; 11(4): e0472822, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37318331

RESUMEN

Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Animales , Ratones , Gripe Humana/prevención & control , Vacunas contra la Influenza/genética , Hemaglutininas , Subtipo H3N2 del Virus de la Influenza A/genética , Neuraminidasa , Anticuerpos Monoclonales , Subtipo H1N1 del Virus de la Influenza A/genética , Anticuerpos Antivirales , Virus de la Influenza A/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética
3.
Commun Biol ; 5(1): 810, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962146

RESUMEN

There is a critical need for physiologically relevant, robust, and ready-to-use in vitro cellular assay platforms to rapidly model the infectivity of emerging viruses and develop new antiviral treatments. Here we describe the cellular complexity of human alveolar and tracheobronchial air liquid interface (ALI) tissue models during SARS-CoV-2 and influenza A virus (IAV) infections. Our results showed that both SARS-CoV-2 and IAV effectively infect these ALI tissues, with SARS-CoV-2 exhibiting a slower replication peaking at later time-points compared to IAV. We detected tissue-specific chemokine and cytokine storms in response to viral infection, including well-defined biomarkers in severe SARS-CoV-2 and IAV infections such as CXCL10, IL-6, and IL-10. Our single-cell RNA sequencing analysis showed similar findings to that found in vivo for SARS-CoV-2 infection, including dampened IFN response, increased chemokine induction, and inhibition of MHC Class I presentation not observed for IAV infected tissues. Finally, we demonstrate the pharmacological validity of these ALI tissue models as antiviral drug screening assay platforms, with the potential to be easily adapted to include other cell types and increase the throughput to test relevant pathogens.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus de la Influenza A , Gripe Humana , Antivirales/farmacología , Antivirales/uso terapéutico , Quimiocinas , Epitelio , Humanos , Virus de la Influenza A/fisiología , Gripe Humana/tratamiento farmacológico , Pulmón , SARS-CoV-2 , Replicación Viral
4.
iScience ; 24(9): 102941, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34368648

RESUMEN

Global deployment of an effective and safe vaccine is necessary to curtail the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a Newcastle disease virus (NDV)-based vectored-vaccine in mice and hamsters for its immunogenicity, safety, and protective efficacy against SARS-CoV-2. Intranasal administration of recombinant (r)NDV-S vaccine expressing spike (S) protein of SARS-CoV-2 to mice induced high levels of SARS-CoV-2-specific neutralizing immunoglobulin A (IgA) and IgG2a antibodies and T-cell-mediated immunity. Hamsters immunized with two doses of vaccine showed complete protection from lung infection, inflammation, and pathological lesions following SARS-CoV-2 challenge. Importantly, administration of two doses of intranasal rNDV-S vaccine significantly reduced the SARS-CoV-2 shedding in nasal turbinate and lungs in hamsters. Collectively, intranasal vaccination has the potential to control infection at the site of inoculation, which should prevent both clinical disease and virus transmission to halt the spread of the COVID-19 pandemic.

5.
Viruses ; 13(8)2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34452521

RESUMEN

Equine influenza virus (EIV) is a constantly evolving viral pathogen that is responsible for yearly outbreaks of respiratory disease in horses termed equine influenza (EI). There is currently no evidence of circulation of the original H7N7 strain of EIV worldwide; however, the EIV H3N8 strain, which was first isolated in the early 1960s, remains a major threat to most of the world's horse populations. It can also infect dogs. The ability of EIV to constantly accumulate mutations in its antibody-binding sites enables it to evade host protective immunity, making it a successful viral pathogen. Clinical and virological protection against EIV is achieved by stimulation of strong cellular and humoral immunity in vaccinated horses. However, despite EI vaccine updates over the years, EIV remains relevant, because the protective effects of vaccines decay and permit subclinical infections that facilitate transmission into susceptible populations. In this review, we describe how the evolution of EIV drives repeated EI outbreaks even in horse populations with supposedly high vaccination coverage. Next, we discuss the approaches employed to develop efficacious EI vaccines for commercial use and the existing system for recommendations on updating vaccines based on available clinical and virological data to improve protective immunity in vaccinated horse populations. Understanding how EIV biology can be better harnessed to improve EI vaccines is central to controlling EI.


Asunto(s)
Enfermedades de los Caballos/prevención & control , Subtipo H3N8 del Virus de la Influenza A/inmunología , Subtipo H7N7 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Anticuerpos Antivirales/inmunología , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Subtipo H3N8 del Virus de la Influenza A/genética , Subtipo H3N8 del Virus de la Influenza A/fisiología , Subtipo H7N7 del Virus de la Influenza A/genética , Subtipo H7N7 del Virus de la Influenza A/fisiología , Vacunas contra la Influenza/administración & dosificación , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología
6.
bioRxiv ; 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34013274

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the third coronavirus in less than 20 years to spillover from an animal reservoir and cause severe disease in humans. High impact respiratory viruses such as pathogenic beta-coronaviruses and influenza viruses, as well as other emerging respiratory viruses, pose an ongoing global health threat to humans. There is a critical need for physiologically relevant, robust and ready to use, in vitro cellular assay platforms to rapidly model the infectivity of emerging respiratory viruses and discover and develop new antiviral treatments. Here, we validate in vitro human alveolar and tracheobronchial tissue equivalents and assess their usefulness as in vitro assay platforms in the context of live SARS-CoV-2 and influenza A virus infections. We establish the cellular complexity of two distinct tracheobronchial and alveolar epithelial air liquid interface (ALI) tissue models, describe SARS-CoV-2 and influenza virus infectivity rates and patterns in these ALI tissues, the viral-induced cytokine production as it relates to tissue-specific disease, and demonstrate the pharmacologically validity of these lung epithelium models as antiviral drug screening assay platforms.

7.
Cell Rep Med ; 2(3): 100218, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33649747

RESUMEN

SARS-CoV-2 infection results in viral burden in the respiratory tract, enabling transmission and leading to substantial lung pathology. The 1212C2 fully human monoclonal antibody was derived from an IgM memory B cell of a COVID-19 patient, has high affinity for the Spike protein receptor binding domain, neutralizes SARS-CoV-2, and exhibits in vivo prophylactic and therapeutic activity in hamsters when delivered intraperitoneally, reducing upper and lower respiratory viral burden and lung pathology. Inhalation of nebulized 1212C2 at levels as low as 0.6 mg/kg, corresponding to 0.03 mg/kg lung-deposited dose, reduced the viral burden below the detection limit and mitigated lung pathology. The therapeutic efficacy of an exceedingly low dose of inhaled 1212C2 supports the rationale for local lung delivery for dose-sparing benefits, as compared to the conventional parenteral route of administration. These results suggest that the clinical development of 1212C2 formulated and delivered via inhalation for the treatment of SARS-CoV-2 infection should be considered.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Administración por Inhalación , Animales , Anticuerpos Monoclonales/clasificación , Anticuerpos Monoclonales/inmunología , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Mapeo Epitopo , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina M/inmunología , Masculino , Células B de Memoria/citología , Células B de Memoria/metabolismo , Persona de Mediana Edad , Pruebas de Neutralización , Filogenia , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
J Virol Methods ; 290: 114084, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33513380

RESUMEN

The use of monoclonal neutralizing antibodies (mNAbs) is being actively pursued as a viable intervention for the treatment of Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2) infection and associated coronavirus disease 2019 (COVID-19). While highly potent mNAbs have great therapeutic potential, the ability of the virus to mutate and escape recognition and neutralization of mNAbs represents a potential problem in their use for the therapeutic management of SARS-CoV-2. Studies investigating natural or mNAb-induced antigenic variability in the receptor binding domain (RBD) of SARS-CoV-2 Spike (S) glycoprotein, and their effects on viral fitness are still rudimentary. In this manuscript we described experimental approaches for the selection, identification, and characterization of SARS-CoV-2 monoclonal antibody resistant mutants (MARMs) in cultured cells. The ability to study SARS-CoV-2 antigenic drift under selective immune pressure by mNAbs is important for the optimal implementation of mNAbs for the therapeutic management of COVID-19. This will help to identify essential amino acid residues in the viral S glycoprotein required for mNAb-mediated inhibition of viral infection, to predict potential natural drift variants that could emerge upon implementation of therapeutic mNAbs, as well as vaccine prophylactic treatments for SARS-CoV-2 infection. Additionally, it will also enable the assessment of MARM viral fitness and its potential to induce severe infection and associated COVID-19 disease.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Variación Antigénica/genética , Farmacorresistencia Viral/genética , SARS-CoV-2/genética , Selección Genética , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Sitios de Unión/genética , Sitios de Unión/inmunología , COVID-19/virología , Chlorocebus aethiops , Humanos , Fenotipo , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero , Tratamiento Farmacológico de COVID-19
9.
J Virol Methods ; 287: 113995, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068703

RESUMEN

Towards the end of 2019, a novel coronavirus (CoV) named severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), genetically similar to severe acute respiratory syndrome coronavirus (SARS-CoV), emerged in Wuhan, Hubei province of China, and has been responsible for coronavirus disease 2019 (COVID-19) in humans. Since its first report, SARS-CoV-2 has resulted in a global pandemic, with over 10 million human infections and over 560,000 deaths reported worldwide at the end of June 2020. Currently, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines and/or antivirals licensed against SARS-CoV-2. The high economical and health impacts of SARS-CoV-2 has placed global pressure on the scientific community to identify effective prophylactic and therapeutic treatments for SARS-CoV-2 infection and associated COVID-19 disease. While some compounds have been already reported to reduce SARS-CoV-2 infection and a handful of monoclonal antibodies (mAbs) have been described that neutralize SARS-CoV-2, there is an urgent need for the development and standardization of assays which can be used in high through-put screening (HTS) settings to identify new antivirals and/or neutralizing mAbs against SARS-CoV-2. Here, we described a rapid, accurate, and highly reproducible plaque reduction microneutralization (PRMNT) assay that can be quickly adapted for the identification and characterization of both neutralizing mAbs and antivirals against SARS-CoV-2. Importantly, our MNA is compatible with HTS settings to interrogate large and/or complex libraries of mAbs and/or antivirals to identify those with neutralizing and/or antiviral activity, respectively, against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antivirales/farmacología , Pruebas de Neutralización/métodos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , Chlorocebus aethiops , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Vero , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacos
10.
Nat Commun ; 11(1): 6122, 2020 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-33257679

RESUMEN

Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología , Animales , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , COVID-19/inmunología , COVID-19/patología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/patología , Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Queratina-18/genética , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Transgénicos , Mortalidad , Regiones Promotoras Genéticas/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología , Virosis/inmunología , Virosis/patología
11.
mBio ; 11(5)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32978313

RESUMEN

Infectious coronavirus (CoV) disease 2019 (COVID-19) emerged in the city of Wuhan (China) in December 2019, causing a pandemic that has dramatically impacted public health and socioeconomic activities worldwide. A previously unknown coronavirus, severe acute respiratory syndrome CoV-2 (SARS-CoV-2), has been identified as the causative agent of COVID-19. To date, there are no U.S. Food and Drug Administration (FDA)-approved vaccines or therapeutics available for the prevention or treatment of SARS-CoV-2 infection and/or associated COVID-19 disease, which has triggered a large influx of scientific efforts to develop countermeasures to control SARS-CoV-2 spread. To contribute to these efforts, we have developed an infectious cDNA clone of the SARS-CoV-2 USA-WA1/2020 strain based on the use of a bacterial artificial chromosome (BAC). Recombinant SARS-CoV-2 (rSARS-CoV-2) was readily rescued by transfection of the BAC into Vero E6 cells. Importantly, BAC-derived rSARS-CoV-2 exhibited growth properties and plaque sizes in cultured cells comparable to those of the natural SARS-CoV-2 isolate. Likewise, rSARS-CoV-2 showed levels of replication similar to those of the natural isolate in nasal turbinates and lungs of infected golden Syrian hamsters. This is, to our knowledge, the first BAC-based reverse genetics system for the generation of infectious rSARS-CoV-2 that displays features in vivo similar to those of a natural viral isolate. This SARS-CoV-2 BAC-based reverse genetics will facilitate studies addressing several important questions in the biology of SARS-CoV-2, as well as the identification of antivirals and development of vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19 disease.IMPORTANCE The pandemic coronavirus (CoV) disease 2019 (COVID-19) caused by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is a major threat to global human health. To date, there are no approved prophylactics or therapeutics available for COVID-19. Reverse genetics is a powerful approach to understand factors involved in viral pathogenesis, antiviral screening, and vaccine development. In this study, we describe the feasibility of generating recombinant SARS-CoV-2 (rSARS-CoV-2) by transfection of a single bacterial artificial chromosome (BAC). Importantly, rSARS-CoV-2 possesses the same phenotype as the natural isolate in vitro and in vivo This is the first description of a BAC-based reverse genetics system for SARS-CoV-2 and the first time that an rSARS-CoV-2 isolate has been shown to be phenotypically identical to a natural isolate in a validated animal model of SARS-CoV-2 infection. The BAC-based reverse genetics approach will facilitate the study of SARS-CoV-2 and the development of prophylactics and therapeutics for the treatment of COVID-19.


Asunto(s)
Betacoronavirus/genética , Cromosomas Artificiales Bacterianos/genética , Animales , Betacoronavirus/patogenicidad , Betacoronavirus/fisiología , COVID-19 , Chlorocebus aethiops , Infecciones por Coronavirus/virología , Cricetinae , ADN Complementario/genética , Genoma Viral/genética , Pandemias , Neumonía Viral/virología , ARN Viral/genética , Genética Inversa , SARS-CoV-2 , Células Vero , Replicación Viral
12.
bioRxiv ; 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32743573

RESUMEN

An infectious coronavirus disease 2019 (COVID-19) emerged in the city of Wuhan (China) in December 2019, causing a pandemic that has dramatically impacted public health and socioeconomic activities worldwide. A previously unknown coronavirus, Severe Acute Respiratory Syndrome CoV-2 (SARS-CoV-2), has been identified as the causative agent of COVID-19. To date, there are no United States (US) Food and Drug Administration (FDA)-approved vaccines or therapeutics available for the prevention or treatment of SARS-CoV-2 infection and/or associated COVID-19 disease, which has triggered a large influx of scientific efforts to develop countermeasures to control SARS-CoV-2 spread. To contribute to these efforts, we have developed an infectious cDNA clone of the SARS-CoV-2 USA-WA1/2020 strain based on the use of a bacterial artificial chromosome (BAC). Recombinant (r)SARS-CoV-2 was readily rescued by transfection of the BAC into Vero E6 cells. Importantly, the BAC-derived rSARS-CoV-2 exhibited growth properties and plaque sizes in cultured cells comparable to those of the SARS-CoV-2 natural isolate. Likewise, rSARS-CoV-2 showed similar levels of replication to that of the natural isolate in nasal turbinates and lungs of infected golden Syrian hamsters. This is, to our knowledge, the first BAC based reverse genetics system for the generation of infectious rSARS-CoV-2 that displays similar features in vivo to that of a natural viral isolate. This SARS-CoV-2 BAC-based reverse genetics will facilitate studies addressing several important questions in the biology of SARS-CoV-2, as well as the identification of antivirals and development of vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19 disease.

13.
Nat Commun ; 11(1): 3718, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709886

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused millions of infections worldwide. In SARS coronaviruses, the non-structural protein 16 (nsp16), in conjunction with nsp10, methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of SARS-CoV-2 nsp16 and nsp10 in the presence of cognate RNA substrate analogue and methyl donor, S-adenosyl methionine (SAM). The nsp16/nsp10 heterodimer is captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We observe large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This induced fit model provides mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discover a distant (25 Å) ligand-binding site unique to SARS-CoV-2, which can alternatively be targeted, in addition to RNA cap and SAM pockets, for antiviral development.


Asunto(s)
Metiltransferasas/química , Caperuzas de ARN/metabolismo , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/virología , Humanos , Metiltransferasas/metabolismo , Modelos Químicos , Modelos Moleculares , Pandemias , Neumonía Viral/virología , ARN Viral/metabolismo , S-Adenosilmetionina/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Difracción de Rayos X
14.
bioRxiv ; 2020 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-32511383

RESUMEN

The novel severe acute respiratory syndrome coronoavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused over 2 million infections worldwide in four months. In SARS coronaviruses, the non-structural protein 16 (nsp16) methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of full-length nsp16 and nsp10 of SARS-CoV-2 in the presence of cognate RNA substrate and a methyl donor, S-adenosyl methionine. The nsp16/nsp10 heterodimer was captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We reveal large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This structure provides new mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discovered a distantly located ligand-binding site unique to SARS-CoV-2 that may serve as an alternative target site for antiviral development.

15.
Vector Borne Zoonotic Dis ; 20(7): 484-495, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32077811

RESUMEN

Background: Worldwide, horses play critical roles in recreation, food production, transportation, and as working animals. Horses' roles differ by geographical region and the socioeconomic status of the people, but despite modern advances in transportation, which have in some ways altered humans contact with horses, potential risks for equine zoonotic pathogen transmission to humans occur globally. While previous reports have focused upon individual or groups of equine pathogens, to our knowledge, a systematic review of equine zoonoses has never been performed. Methods: Using PRISMA's systematic review guidelines, we searched the English literature and identified 233 previous reports of potential equine zoonoses found in horses. We studied and summarized their findings with a goal of identifying risk factors that favor disease transmission from horses to humans. Results: These previous reports identified 56 zoonotic pathogens that have been found in horses. Of the 233 articles, 13 involved direct transmission to humans (5.6%).The main potential routes of transmission included oral, inhalation, and cutaneous exposures. Pathogens most often manifest in humans through systemic, gastrointestinal, and dermatological signs and symptoms. Furthermore, 16.1% were classified as emerging infectious diseases and thus may be less known to both the equine and human medical community. Sometimes, these infections were severe leading to human and equine death. Conclusions: While case reports of zoonotic infections directly from horses remain low, there is a high potential for underreporting due to lack of knowledge among health professionals. Awareness of these zoonotic pathogens, their disease presentation in horses and humans, and their associated risk factors for cross-species infection are important to public health officials, clinicians, and people with recreational or occupational equid exposure.


Asunto(s)
Infecciones Bacterianas/veterinaria , Enfermedades de los Caballos/microbiología , Enfermedades Parasitarias en Animales/parasitología , Virosis/veterinaria , Animales , Infecciones Bacterianas/microbiología , Caballos , Virosis/virología , Zoonosis
17.
Vet Immunol Immunopathol ; 219: 109971, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31739157

RESUMEN

Equine herpesvirus type 4 (EHV-4) is mildly pathogenic but is a common cause of respiratory disease in horses worldwide. We previously demonstrated that unlike EHV-1, EHV-4 is not a potent inducer of type-I IFN and does not suppress that IFN response, especially during late infection, when compared to EHV-1 infection in equine endothelial cells (EECs). Here, we investigated the impact of EHV-4 infection in EECs on type-I IFN signaling molecules at 3, 6, and 12 hpi. Findings from our study revealed that EHV-4 did not induce nor suppress TLR3 and TLR4 expression in EECs at all the studied time points. EHV-4 was able to induce variable amounts of IRF7 and IRF9 in EECs with no evidence of suppressive effect on these important transcription factors of IFN-α/ß induction. Intriguingly, EHV-4 did interfere with the phosphorylation of STAT1/STAT2 at 3 hpi and 6 hpi, less so at 12 hpi. An active EHV-4 viral gene expression was required for the suppressive effect of EHV-4 on STAT1/STAT2 phosphorylation during early infection. One or more early viral genes of EHV-4 are involved in the suppression of STAT1/STAT2 phosphorylation observed during early time points in EHV-4-infected EECs. The inability of EHV-4 to significantly down-regulate key molecules of type-I IFN signaling may be related to the lower severity of pathogenesis when compared with EHV-1. Harnessing this knowledge may prove useful in controlling future outbreaks of the disease.


Asunto(s)
Células Endoteliales/inmunología , Herpesvirus Équido 4/inmunología , Interacciones Microbiota-Huesped/inmunología , Inmunidad Innata , Interferón Tipo I/inmunología , Animales , Células Cultivadas , Células Endoteliales/virología , Herpesvirus Équido 4/patogenicidad , Enfermedades de los Caballos/inmunología , Enfermedades de los Caballos/virología , Caballos , Factor 3 de Genes Estimulados por el Interferón/inmunología , Interferón-alfa/inmunología , Interferón beta/inmunología , Fosforilación , Arteria Pulmonar/citología , Factor de Transcripción STAT2/inmunología , Transducción de Señal/inmunología , Receptores Toll-Like/inmunología
18.
Front Microbiol ; 10: 2668, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31849857

RESUMEN

Equine herpesvirus-1 (EHV-1) is one of the most important and prevalent viral pathogens of horses and a major threat to the equine industry throughout most of the world. EHV-1 primarily causes respiratory disease but viral spread to distant organs enables the development of more severe sequelae; abortion and neurologic disease. The virus can also undergo latency during which viral genes are minimally expressed, and reactivate to produce lytic infection at any time. Recently, there has been a trend of increasing numbers of outbreaks of a devastating form of EHV-1, equine herpesviral myeloencephalopathy. This review presents detailed information on EHV-1, from the discovery of the virus to latest developments on treatment and control of the diseases it causes. We also provide updates on recent EHV-1 research with particular emphasis on viral biology which enables pathogenesis in the natural host. The information presented herein will be useful in understanding EHV-1 and formulating policies that would help limit the spread of EHV-1 within horse populations.

19.
Viruses ; 11(10)2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614538

RESUMEN

Vaccination remains the most effective approach for preventing and controlling equine influenza virus (EIV) in horses. However, the ongoing evolution of EIV has increased the genetic and antigenic differences between currently available vaccines and circulating strains, resulting in suboptimal vaccine efficacy. As recommended by the World Organization for Animal Health (OIE), the inclusion of representative strains from clade 1 and clade 2 Florida sublineages of EIV in vaccines may maximize the protection against presently circulating viral strains. In this study, we used reverse genetics technologies to generate a bivalent EIV live-attenuated influenza vaccine (LAIV). We combined our previously described clade 1 EIV LAIV A/equine/Ohio/2003 H3N8 (Ohio/03 LAIV) with a newly generated clade 2 EIV LAIV that contains the six internal genes of Ohio/03 LAIV and the HA and NA of A/equine/Richmond/1/2007 H3N8 (Rich/07 LAIV). The safety profile, immunogenicity, and protection efficacy of this bivalent EIV LAIV was tested in the natural host, horses. Vaccination of horses with the bivalent EIV LAIV, following a prime-boost regimen, was safe and able to confer protection against challenge with clade 1 (A/equine/Kentucky/2014 H3N8) and clade 2 (A/equine/Richmond/2007) wild-type (WT) EIVs, as evidenced by a reduction of clinical signs, fever, and virus excretion. This is the first description of a bivalent LAIV for the prevention of EIV in horses that follows OIE recommendations. In addition, since our bivalent EIV LAIV is based on the use of reverse genetics approaches, our results demonstrate the feasibility of using the backbone of clade 1 Ohio/03 LAIV as a master donor virus (MDV) for the production and rapid update of LAIVs for the control and protection against other EIV strains of epidemiological relevance to horses.


Asunto(s)
Subtipo H3N8 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Vacunación/veterinaria , Vacunas Sintéticas , Animales , Enfermedades de los Caballos/virología , Caballos , Humanos , Gripe Humana/prevención & control , Genética Inversa/métodos , Genética Inversa/veterinaria , Vacunas Atenuadas
20.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31511388

RESUMEN

Equid herpesvirus 1 (EHV-1) is a viral pathogen of horse populations worldwide spread by the respiratory route and is known for causing outbreaks of neurologic syndromes and abortion storms. Previously, we demonstrated that an EHV-1 strain of the neuropathogenic genotype, T953, downregulates the beta interferon (IFN-ß) response in vitro in equine endothelial cells (EECs) at 12 h postinfection (hpi). In the present study, we explored the molecular correlates of this inhibition as clues toward an understanding of the mechanism. Data from our study revealed that EHV-1 infection of EECs significantly reduced both Toll-like receptor 3 (TLR3) and TLR4 mRNA expression at 6 hpi and 12 hpi. While EHV-1 was able to significantly reduce IRF9 mRNA at both 6 hpi and 12 hpi, the virus significantly reduced IFN regulatory factor 7 (IRF7) mRNA only at 12 hpi. EHV-1 did not alter the cellular level of Janus-activated kinase 1 (JAK1) at any time point. However, EHV-1 reduced the cellular level of expression of tyrosine kinase 2 (TYK2) at 12 hpi. Downstream of JAK1-TYK2 signaling, EHV-1 blocked the phosphorylation and activation of signal transducer and activator of transcription 2 (STAT2) when coincubated with exogenous IFN, at 12 hpi, although not at 3 or 6 hpi. Immunofluorescence staining revealed that the virus prevented the nuclear translocation of STAT2 molecules, confirming the virus-mediated inhibition of STAT2 activation. The pattern of suppression of phosphorylation of STAT2 by EHV-1 implicated viral late gene expression. These data help illuminate how EHV-1 strategically inhibits the host innate immune defense by limiting steps required for type I IFN sensitization and induction.IMPORTANCE To date, no commercial vaccine label has a claim to be fully protective against the diseases caused by equid herpesvirus 1 (EHV-1), especially the neurologic form. The interferon (IFN) system, of which type I IFN is of great importance, still remains a viable immunotherapeutic option against EHV-1 infection. The type I IFN system has been exploited successfully to treat other viral infections, such as chronic hepatitis B and C in humans. The current state of research on how EHV-1 interferes with the protective effect of type I IFN has indicated transient induction of type I IFN production followed by a rapid shutdown in vitro in equine endothelial cells (EECs). The significance of our study is the identification of certain steps in the type I IFN signaling pathway targeted for inhibition by EHV-1. Understanding this pathogen-host relationship is essential for the long-term goal of developing effective immunotherapy against EHV-1.


Asunto(s)
Células Endoteliales/metabolismo , Células Endoteliales/virología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/metabolismo , Herpesvirus Équido 1/inmunología , Interferón Tipo I/metabolismo , Animales , Regulación de la Expresión Génica , Hepatitis B Crónica , Infecciones por Herpesviridae/virología , Herpesvirus Équido 1/genética , Enfermedades de los Caballos/virología , Caballos , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Janus Quinasa 1/metabolismo , ARN Mensajero/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , TYK2 Quinasa/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...