Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36047761

RESUMEN

Circadian rhythms are maintained by a cell-autonomous, transcriptional-translational feedback loop known as the molecular clock. While previous research suggests a role of the molecular clock in regulating skeletal muscle structure and function, no mechanisms have connected the molecular clock to sarcomere filaments. Utilizing inducible, skeletal muscle specific, Bmal1 knockout (iMSBmal1-/-) mice, we showed that knocking out skeletal muscle clock function alters titin isoform expression using RNAseq, liquid chromatography-mass spectrometry, and sodium dodecyl sulfate-vertical agarose gel electrophoresis. This alteration in titin's spring length resulted in sarcomere length heterogeneity. We demonstrate the direct link between altered titin splicing and sarcomere length in vitro using U7 snRNPs that truncate the region of titin altered in iMSBmal1-/- muscle. We identified a mechanism whereby the skeletal muscle clock regulates titin isoform expression through transcriptional regulation of Rbm20, a potent splicing regulator of titin. Lastly, we used an environmental model of circadian rhythm disruption and identified significant downregulation of Rbm20 expression. Our findings demonstrate the importance of the skeletal muscle circadian clock in maintaining titin isoform through regulation of RBM20 expression. Because circadian rhythm disruption is a feature of many chronic diseases, our results highlight a novel pathway that could be targeted to maintain skeletal muscle structure and function in a range of pathologies.


Asunto(s)
Relojes Circadianos , Enfermedades Musculares , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Conectina/genética , Conectina/metabolismo , Ratones , Músculo Esquelético/metabolismo , Enfermedades Musculares/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
Hum Mol Genet ; 31(18): 3144-3160, 2022 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-35567413

RESUMEN

Myotonic dystrophy (DM) is caused by expansions of C(C)TG repeats in the non-coding regions of the DMPK and CNBP genes, and DM patients often suffer from sudden cardiac death due to lethal conduction block or arrhythmia. Specific molecular changes that underlie DM cardiac pathology have been linked to repeat-associated depletion of Muscleblind-like (MBNL) 1 and 2 proteins and upregulation of CUGBP, Elav-like family member 1 (CELF1). Hypothesis solely targeting MBNL1 or CELF1 pathways that could address all the consequences of repeat expansion in heart remained inconclusive, particularly when the direct cause of mortality and results of transcriptome analyses remained undetermined in Mbnl compound knockout (KO) mice with cardiac phenotypes. Here, we develop Myh6-Cre double KO (DKO) (Mbnl1-/-; Mbnl2cond/cond; Myh6-Cre+/-) mice to eliminate Mbnl1/2 in cardiomyocytes and observe spontaneous lethal cardiac events under no anesthesia. RNA sequencing recapitulates DM heart spliceopathy and shows gene expression changes that were previously undescribed in DM heart studies. Notably, immunoblotting reveals a nearly 6-fold increase of Calsequestrin 1 and 50% reduction of epidermal growth factor proteins. Our findings demonstrate that complete ablation of MBNL1/2 in cardiomyocytes is essential for generating sudden death due to lethal cardiac rhythms and reveal potential mechanisms for DM heart pathogenesis.


Asunto(s)
Distrofia Miotónica , Empalme Alternativo/genética , Animales , Calsecuestrina/genética , Proteínas de Unión al ADN/genética , Muerte Súbita Cardíaca/etiología , Muerte Súbita Cardíaca/patología , Familia de Proteínas EGF/genética , Familia de Proteínas EGF/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo , Distrofia Miotónica/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
3.
Hum Mol Genet ; 29(24): 3900-3918, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33378537

RESUMEN

C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.


Asunto(s)
Empalme Alternativo , Esclerosis Amiotrófica Lateral/patología , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Demencia Frontotemporal/patología , Penetrancia , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Demencia Frontotemporal/etiología , Demencia Frontotemporal/metabolismo , Humanos , Ratones , Ratones Transgénicos , Mutación , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...