Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(9)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37174642

RESUMEN

Boron neutron capture therapy (BNCT) combines preferential tumor uptake of 10B compounds and neutron irradiation. Electroporation induces an increase in the permeability of the cell membrane. We previously demonstrated the optimization of boron biodistribution and microdistribution employing electroporation (EP) and decahydrodecaborate (GB-10) as the boron carrier in a hamster cheek pouch oral cancer model. The aim of the present study was to evaluate if EP could improve tumor control without enhancing the radiotoxicity of BNCT in vivo mediated by GB-10 with EP 10 min after GB-10 administration. Following cancerization, tumor-bearing hamster cheek pouches were treated with GB-10/BNCT or GB-10/BNCT + EP. Irradiations were carried out at the RA-3 Reactor. The tumor response and degree of mucositis in precancerous tissue surrounding tumors were evaluated for one month post-BNCT. The overall tumor response (partial remission (PR) + complete remission (CR)) increased significantly for protocol GB-10/BNCT + EP (92%) vs. GB-10/BNCT (48%). A statistically significant increase in the CR was observed for protocol GB-10/BNCT + EP (46%) vs. GB-10/BNCT (6%). For both protocols, the radiotoxicity (mucositis) was reversible and slight/moderate. Based on these results, we concluded that electroporation improved the therapeutic efficacy of GB-10/BNCT in vivo in the hamster cheek pouch oral cancer model without increasing the radiotoxicity.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias de la Boca , Mucositis , Cricetinae , Animales , Terapia por Captura de Neutrón de Boro/métodos , Distribución Tisular , Boro , Neoplasias de la Boca/radioterapia , Neoplasias de la Boca/patología , Electroporación
2.
Micromachines (Basel) ; 13(8)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-36014157

RESUMEN

Currently, increasing amounts of pulsed electric fields (PEF) are employed to improve a person's life quality. This technology is based on the application of the shortest high voltage electrical pulse, which generates an increment over the cell membrane permeability. When applying these pulses, an unwanted effect is electrolysis, which could alter the treatment. This work focused on the study of the local variations of the electric field and current density around the bubbles formed by the electrolysis of water by PEF technology and how these variations alter the electroporation protocol. The assays, in the present work, were carried out at 2 KV/cm, 1.2 KV/cm and 0.6 KV/cm in water, adjusting the conductivity with NaCl at 2365 µs/cm with a single pulse of 800 µs. The measurements of the bubble diameter variations due to electrolysis as a function of time allowed us to develop an experimental model of the behavior of the bubble diameter vs. time, which was used for simulation purposes. In the in silico model, we calculated that the electric field and observed an increment of current density around the bubble can be up to four times the base value due to the edge effect around it, while the thermal effects were undesirable due to the short duration of the pulses (variations of ±0.1 °C are undesirable). This research revealed that the rise of electric current is not just because of the shift in electrical conductivity due to chemical and thermal effects, but also varies with the bubble coverage over the electrode surface and variations in the local electric field by edge effect. All these variations can conduce to unwanted limitations over PEF treatment. In the future, we recommend tests on the variation of local current conductivity and electric fields.

3.
Radiat Environ Biophys ; 58(3): 455-467, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31123853

RESUMEN

Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.


Asunto(s)
Compuestos de Boro/metabolismo , Terapia por Captura de Neutrón de Boro/métodos , Boro/metabolismo , Isótopos/metabolismo , Animales , Mejilla , Cricetinae , Modelos Animales de Enfermedad , Mesocricetus , Neoplasias de la Boca , Distribución Tisular
4.
Radiol Oncol ; 51(4): 422-430, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29333121

RESUMEN

BACKGROUND: Nasal cavity tumors are usually diagnosed late, when they already have infiltrated adjacent tissues thus requiring very aggressive treatments with serious side effects. Here we use electrochemotherapy (ECT), a well demonstrated treatment modality for superficial tumors. MATERIALS AND METHODS: In the case of deep-seated tumors, the main limitation of ECT is reaching the tumor with an appropriate electric field. To overcome this limitation we introduce the single needle electrode (SiNE), a minimally invasive device that can deliver an appropriate electric field with a simple procedure. Twenty-one canine patients with spontaneous tumors were selected, eleven were treated using the SiNE with ECT, and ten with surgery plus adjuvant chemotherapy as a control group. RESULTS: In the SiNE group, 27% achieved a complete response, 64% had a partial response, and 9% had a stable disease. This means that 91% of objective responses were obtained. The mean overall survival was 16.86 months (4-32 months, median 16.5 months), with a survival rate significantly higher (p = 0.0008) when compared with control group. The only side effect observed was the inflammation of the treated nasal passage, which was controlled with corticosteroid therapy for one week. One year after the treatment, 60% of the canine of the SiNE group vs. 10% of the control group remained alive, and after the 32 months follow-up, the survival rate were 30% and 0%, respectively. CONCLUSIONS: ECT with the SiNE can be safely used in canine to treat nasal tumors with encouraging results.

5.
Radiol Oncol ; 50(1): 58-63, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-27069450

RESUMEN

BACKGROUND: Electrochemotherapy (ECT), a medical treatment widely used in human patients for tumor treatment, increases bleomycin toxicity by 1000 fold in the treated area with an objective response rate of around 80%. Despite its high response rate, there are still 20% of cases in which the patients are not responding. This could be ascribed to the fact that bleomycin, when administered systemically, is not reaching the whole tumor mass properly because of the characteristics of tumor vascularization, in which case local administration could cover areas that are unreachable by systemic administration. PATIENTS AND METHODS: We propose combined bleomycin administration, both systemic and local, using companion animals as models. We selected 22 canine patients which failed to achieve a complete response after an ECT treatment session. Eleven underwent another standard ECT session (control group), while 11 received a combined local and systemic administration of bleomycin in the second treatment session. RESULTS: According to the WHO criteria, the response rates in the combined administration group were: complete response (CR) 54% (6), partial response (PR) 36% (4), stable disease (SD) 10% (1). In the control group, these were: CR 0% (0), PR 19% (2), SD 63% (7), progressive disease (PD) 18% (2). In the combined group 91% objective responses (CR+PR) were obtained. In the control group 19% objective responses were obtained. The difference in the response rate between the treatment groups was significant (p < 0.01). CONCLUSIONS: Combined local and systemic bleomycin administration was effective in previously to ECT non responding canine patients. The results indicate that this approach could be useful and effective in specific population of patients and reduce the number of treatment sessions needed to obtain an objective response.

6.
PLoS One ; 9(12): e113413, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25437512

RESUMEN

Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate predictions of treatment outcomes.


Asunto(s)
Electroporación/métodos , Simulación por Computador , Conductividad Eléctrica , Reproducibilidad de los Resultados , Solanum tuberosum/citología , Temperatura
7.
PLoS One ; 8(11): e80167, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278257

RESUMEN

Treatments based on electroporation (EP) induce the formation of pores in cell membranes due to the application of pulsed electric fields. We present experimental evidence of the existence of pH fronts emerging from both electrodes during treatments based on tissue EP, for conditions found in many studies, and that these fronts are immediate and substantial. pH fronts are indirectly measured through the evanescence time (ET), defined as the time required for the tissue buffer to neutralize them. The ET was measured through a pH indicator imaged at a series of time intervals using a four-cluster hard fuzzy-c-means algorithm to segment pixels corresponding to the pH indicator at every frame. The ET was calculated as the time during which the number of pixels was 10% of those in the initial frame. While in EP-based treatments such as reversible (ECT) and irreversible electroporation (IRE) the ET is very short (though enough to cause minor injuries) due to electric pulse characteristics and biological buffers present in the tissue, in gene electrotransfer (GET), ET is much longer, enough to denaturate plasmids and produce cell damage. When any of the electric pulse parameters is doubled or tripled the ET grows and, remarkably, when any of the pulse parameters in GET is halved, the ET drops significantly. Reducing pH fronts has relevant implications for GET treatment efficiency, due to a substantial reduction of plasmid damage and cell loss.


Asunto(s)
Electroquimioterapia/métodos , Electroporación , Concentración de Iones de Hidrógeno , Algoritmos , Animales , Perros , Lógica Difusa
8.
PLoS One ; 6(4): e17303, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21559079

RESUMEN

We present experimental measurements and theoretical predictions of ion transport in agar gels during reversible electroporation (ECT) for conditions typical to many clinical studies found in the literature, revealing the presence of pH fronts emerging from both electrodes. These results suggest that pH fronts are immediate and substantial. Since they might give rise to tissue necrosis, an unwanted condition in clinical applications of ECT as well as in irreversible electroporation (IRE) and in electrogenetherapy (EGT), it is important to quantify their extent and evolution. Here, a tracking technique is used to follow the space-time evolution of these pH fronts. It is found that they scale in time as t(½), characteristic of a predominantly diffusive process. Comparing ECT pH fronts with those arising in electrotherapy (EChT), another treatment applying constant electric fields whose main goal is tissue necrosis, a striking result is observed: anodic acidification is larger in ECT than in EChT, suggesting that tissue necrosis could also be greater. Ways to minimize these adverse effects in ECT are suggested.


Asunto(s)
Electroporación/métodos , Técnicas Genéticas , Animales , Electroquímica/métodos , Electrodos , Terapia Genética/métodos , Humanos , Concentración de Iones de Hidrógeno , Modelos Teóricos , Necrosis/patología , Plásmidos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...