Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Sci Rep ; 14(1): 21175, 2024 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256523

RESUMEN

Various seeds, including sea buckthorn (Hippophae rhamnoides L.) seeds, are sources of different bioactive compounds. They can show anti-inflammatory, hypoglycemic, anti-hyperlipidemic, antibacterial, antioxidant, or other biological properties in in vitro and in vivo models. Our preliminary in vitro results have demonstrated that the extracts from raw (no thermal processing) and roasted (thermally processed) sea buckthorn seeds have antioxidant potential and anticoagulant activity. However, it was unclear which compounds were responsible for these properties. Therefore, in continuation of our previous study, the extracts were fractionated by C18 chromatography. Phytochemical analysis of three fractions (a, b, and c) from raw sea buckthorn seeds and four fractions (d, e, f, and g) from roasted sea buckthorn seeds were performed. Several in vitro assays were also conducted to determine the antioxidant and procoagulant/anticoagulant potential of the fractions and two of their major constituents-isorhamnetin 3-O-ß-glucoside7-O-α-rhamnoside and serotonin. LC-MS analyses showed that serotonin is the dominant constituent of fractions c and f, which was tentatively identified on the basis of its HRMS and UV spectra. Moreover, fractions c and f, as well as b and e, contained different B-type proanthocyanidins. Fractions b and e consisted mainly of numerous glycosides of kaempferol, quercetin, and isorhamnetin. The results of oxidative stress assays (measurements of protein carbonylation, lipid peroxidation, and thiol groups oxidation) showed that out of all the tested fractions, fraction g (isolated from roasted seeds and containing mainly dihexoses, and serotonin) demonstrated the strongest antioxidant properties.


Asunto(s)
Antioxidantes , Hippophae , Extractos Vegetales , Semillas , Antioxidantes/farmacología , Antioxidantes/química , Semillas/química , Hippophae/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Serotonina/metabolismo , Hemostáticos/farmacología , Hemostáticos/aislamiento & purificación , Humanos , Anticoagulantes/farmacología , Anticoagulantes/química , Animales
2.
Foods ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123591

RESUMEN

Sea buckthorn (Hippophae rhamnoides L.) is a tree or shrub with small, orange berries. Sea buckthorn seeds have shown many properties beneficial to human health, including antioxidant, anti-hypertensive, anti-hyperlipidemic, and retinoprotective activities. Seeds, as a component of food, are often exposed to high temperatures, which can increase or decrease their biological activity. In our previous study, we showed that both raw and roasted sea buckthorn seeds had significant antioxidant activity, which was measured in human plasma in vitro. In this paper, we evaluated the effect of extracts from raw and roasted sea buckthorn seeds on several parameters of hemostasis in vitro, including thrombus formation in full blood (measured by the Total Thrombus formation Analysis System-T-TAS), blood platelet activation (based on the exposition of P-selectin, the active form of GPIIb/IIIa on their surface and platelet-derived microparticles formation), aggregation (measured with impedance aggregometry), adhesion to fibrinogen and collagen, arachidonic acid metabolism in washed platelets stimulated by thrombin, and COX-1 activity. We also measured the levels of free 8-isoprostane in plasma and the total non-enzymatic antioxidant status of plasma. The extract from roasted seeds (50 µg/mL) significantly prolonged the time of occlusion measured by T-TAS-the AUC10 (area under the curve) value was decreased by approximately 18%. Both extracts decreased the exposition of the active form of GPIIb/IIIa on the surface of platelets activated with 10 µM ADP (by 38.4-62.2%) and 20 µM ADP (by 39.7-51.3%). Moreover, the extract from raw seeds decreased the exposition of P-selectin on the surface of platelets stimulated with 20 µM ADP (by 31.2-34.9%). The adhesion of thrombin-stimulated platelets to fibrinogen and collagen was inhibited only by the extract from roasted sea buckthorn seeds (by 20-30%). Moreover, the extract from raw seeds inhibited the level of TBARS (thiobarbituric acid-reactive substances, an indicator of enzymatic peroxidation of arachidonic acid) in washed platelets stimulated with thrombin; the activity of COX-1 was inhibited by both extracts, although the effect of the extract from raw seeds was stronger. These results indicate that sea buckthorn seeds have anti-platelet activity that is not decreased by thermal processing, but more research is needed to determine which exact chemical compounds and mechanisms are responsible for this phenomenon.

3.
Food Chem ; 458: 140526, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053392

RESUMEN

Thermal processing can alter the biological activity of seed phytochemicals in various ways, thus improving shelf life, bioavailability, oxidative stability, and oil yield; it can also decrease the content of antinutritional compounds, reduce cytotoxic activity and increase the total phenolic content of the seeds. However, this treatment can also inactivate beneficial compounds, including phenolics. This review describes the effect of different thermal processing methods on the content, activity, and bioavailability of chemical compounds from different edible seeds. The outcome is dependent on the method, temperature, time of processing, and type of seeds. Although thermal processing has many benefits, its precise effect on different species requires further clarification to determine how it influences their phytochemical content and biological activity, and identify the optimal conditions for processing.


Asunto(s)
Antioxidantes , Calor , Semillas , Semillas/química , Antioxidantes/química , Manipulación de Alimentos , Fitoquímicos/química , Extractos Vegetales/química , Fenoles/química
4.
Nutrients ; 16(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999733

RESUMEN

Natural and synthetic colorants present in food can modulate hemostasis, which includes the coagulation process and blood platelet activation. Some colorants have cardioprotective activity as well. However, the effect of genipin (a natural blue colorant) and synthetic blue colorants (including patent blue V and brilliant blue FCF) on hemostasis is not clear. In this study, we aimed to investigate the effects of three blue colorants-genipin, patent blue V, and brilliant blue FCF-on selected parameters of hemostasis in vitro. The anti- or pro-coagulant potential was assessed in human plasma by measuring the following coagulation times: thrombin time (TT), prothrombin time (PT), and activated partial thromboplastin time (APTT). Moreover, we used the Total Thrombus formation Analysis System (T-TAS, PL-chip) to evaluate the anti-platelet potential of the colorants in whole blood. We also measured their effect on the adhesion of washed blood platelets to fibrinogen and collagen. Lastly, the cytotoxicity of the colorants against blood platelets was assessed based on the activity of extracellular lactate dehydrogenase (LDH). We observed that genipin (at all concentrations (1-200 µM)) did not have a significant effect on the coagulation times (PT, APTT, and TT). However, genipin at the highest concentration (200 µM) and patent blue V at the concentrations of 1 and 10 µM significantly prolonged the time of occlusion measured using the T-TAS, which demonstrated their anti-platelet activity. We also observed that genipin decreased the adhesion of platelets to fibrinogen and collagen. Only patent blue V and brilliant blue FCF significantly shortened the APTT (at the concentration of 10 µM) and TT (at concentrations of 1 and 10 µM), demonstrating pro-coagulant activity. These synthetic blue colorants also modulated the process of human blood platelet adhesion, stimulating the adhesion to fibrinogen and inhibiting the adhesion to collagen. The results demonstrate that genipin is not toxic. In addition, because of its ability to reduce blood platelet activation, genipin holds promise as a novel and valuable agent that improves the health of the cardiovascular system and reduces the risk of cardiovascular diseases. However, the mechanism of its anti-platelet activity remains unclear and requires further studies. Its in vivo activity and interaction with various anti-coagulant and anti-thrombotic drugs, including aspirin and its derivatives, should be examined as well.


Asunto(s)
Coagulación Sanguínea , Plaquetas , Colorantes de Alimentos , Iridoides , Humanos , Iridoides/farmacología , Coagulación Sanguínea/efectos de los fármacos , Colorantes de Alimentos/farmacología , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Hemostasis/efectos de los fármacos , Tiempo de Tromboplastina Parcial , Adhesividad Plaquetaria/efectos de los fármacos , Fibrinógeno/metabolismo , Bencenosulfonatos/farmacología , Tiempo de Protrombina , Colorantes de Rosanilina/farmacología , Hemostáticos/farmacología , Activación Plaquetaria/efectos de los fármacos , Tiempo de Trombina
5.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38675397

RESUMEN

This review contains the results of Polish (Central Europe) ethnomedical studies that describe the treatment of urinary tract diseases with wild and cultivated plants. The study includes only the plants that are used to treat the urinary tract, excluding prostate diseases. A review of the literature was carried out to verify the pharmacological use of the plants mentioned in the interviews. Based on this, the study reviews the pharmacological activities of all the recorded species and indicates their most important chemical compounds. Fifty-three species (belonging to 30 families) were selected for the study. The Compositae (eight species), Rosaceae (six species), and Apiaceae (six species) are the most common families used in the treatment of urinary diseases in Polish folk medicine. Both in vitro and in vivo studies have confirmed that many of these plant species have beneficial properties, such as diuretic, antihyperuricemic, antimicrobial, and anti-inflammatory activity, or the prevention of urinary stone formation. These effects are exerted through different mechanisms, for example, through the activation of bradykinin B2 receptors, inhibition of xanthine oxidase, or inhibition of Na+-K+ pump. Many plants used in folk medicine are rich in phytochemicals with proven effectiveness against urinary tract diseases, such as rutin, arbutin, or triterpene saponins.

6.
Front Pharmacol ; 15: 1395658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666019

RESUMEN

Mistletoe is an evergreen woody shrub with stems measuring 30-100 cm. It has leathery, yellowish-green strap-shaped leaves, yellowish-green flowers, and bears typical berries. The most common species is Viscum album L., mainly present in Europe and Asia. It is commonly known as European mistletoe or simply, mistletoe. Scientific interest in mistletoe was awakened in the XX century. Mistletoe, especially V. album L., has historically been used in the treatment and prophylaxis of CVD, with its properties being confirmed in recent studies. This mini-review describes new aspects of the cardioprotective properties of various species of mistletoe, especially V. album L. The effect of oral and subcutaneous application of fresh V. album L. extracts on blood pressure has been studied in various models; while the data suggests that mistletoe may be a promising herbal extract with cardioprotective properties, the species has only been tested in vitro and in vivo, on animals. In addition, it is unclear whether the cardioprotective activity of mistletoe may be due to particular chemical components, as the chemical composition of mistletoe extracts can vary depending on inter alia the time of harvest, extraction method and plant part. Hence, this activity may instead result from synergistic interactions between various secondary metabolites. Therefore, further studies are needed to identify the mechanisms of action of mistletoe compounds on CVDs, and determine their interactions with other cardioprotective drugs, their metabolic mechanisms, pharamacokinetics and adverse effects. More research is also needed to determine the therapeutic doses of active ingredients for use in clinical trials; this would require an accurate understanding of the chemical composition of extracts from different species of mistletoe (not only V. album L.) and from various host trees.

7.
Foods ; 13(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38472804

RESUMEN

Nitric oxide (NO) is an inorganic radical produced by both the non-enzymatic nitrate (NO3-)-nitrite (NO2-)-NO pathway and enzymatic reactions catalyzed by nitric oxide synthase (NOS). Also, as nitrate and nitrite from dietary and other endogenous sources can be reduced back to nitric oxide in vivo, the endogenous NO level can be increased through the consumption of nitrate-rich vegetables. Ingestion of dietary NO3- has beneficial effects which have been attributed to a subsequent increase in NO: a signaling molecule that may regulate various systems, including the cardiovascular system. A diet rich in NO3- from green leafy and root vegetables has cardioprotective effects, with beetroot products being particularly good sources of NO3-. For example, various studies have demonstrated a significant increase in nitrite levels (regarded as markers of NO) in plasma after the intake of beetroot juice. The present review describes the current literature concerning the role of nitrate-rich vegetables (especially beetroot products) in the prophylaxis and treatment of cardiovascular diseases (CVDs). This review is based on studies identified in electronic databases, including PubMed, ScienceDirect, Web of Knowledge, Sci Finder, Web of Science, and SCOPUS.

8.
Front Pharmacol ; 15: 1366076, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533262

RESUMEN

Hyperactivation of blood platelets, one of the causes of heart attack, and other cardiovascular diseases (CVDs), is influenced by various dietary components, including phenolic compounds from vegetables, fruits, teas, wines, cocoa and its products, including chocolate. The present paper sheds new light on the effect of cocoa and its products, especially dark chocolate, on the number and function of blood platelets, and the anti-platelet activity of their constituent phenolic compounds. A review was performed of papers identified in various electronic databases, including PubMed, Science Direct, Scopus, Web of Knowledge, and Google Scholar, with the aim of determining whether their anti-platelet activity may serve as part of a sweet strategy in countering CVDs. Various studies demonstrate that cocoa consumption, especially in the form of dark chocolate, with a high flavanol concentration, has anti-platelet activity and may play a significant role in cardioprotection; they also note that cocoa consumption may be a good strategy in diminishing cardiovascular risk, including hyperactivation of blood platelets.

9.
Nutrients ; 16(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474726

RESUMEN

Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references.


Asunto(s)
Cynara scolymus , Cynara scolymus/química , Antioxidantes/análisis , Suplementos Dietéticos , Flavonoides/análisis , Fenoles/análisis , Extractos Vegetales/química , Hojas de la Planta/química
10.
Foods ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254543

RESUMEN

Nuts have been known as a nutritious food since ancient times and can be considered part of our original diet: they are one of the few foods that have been eaten in the same form for thousands of years. They consist of various dry fruits and seeds, with the most common species being almonds (Prunus dulcis), hazelnuts (Corylus avellana), cashews (cashew nuts, Anacardium occidentale), pistachios (Pistacia vera), walnuts (Italian nuts, Juglans regia), peanuts (Arachia hypogaca), Brazil nuts (Bartholletia excels), pecans (Corya illinoinensis), macadamia nuts (Macademia ternifolia) and pine nuts. Both in vitro and in vivo studies have found nuts to possess a range of bioactive compounds with cardioprotective properties, and hence, their consumption may play a role in preventing and treating cardiovascular diseases (CVDs). The present work reviews the current state of knowledge regarding the functional ingredients of various nuts (almonds, Brazil nuts, cashew nuts, hazelnuts, macadamia nuts, peanuts, pecan nuts, pine nuts, pistachios, and walnuts) and the molecular mechanisms of their cardioprotective action. The data indicate that almonds, walnuts and pistachios are the best nut sources of bioactive ingredients with cardioprotective properties.

11.
Foods ; 13(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254589

RESUMEN

The genus Asparagus comprises about 300 species, including A. curilus, A. filicinus, A. reacemosus, and A. officinalis L. A particularly well-known member of the genus is Asparagus officinalis L., also known as "the king of vegetables". Consuming A. officinalis makes an excellent contribution to a healthy diet. Modern studies have shown it to have a diuretic effect and promote defecation; it also demonstrates high levels of basic nutrients, including vitamins, amino acids and mineral salts. Moreover, it is rich in fiber. Asparagus contains large amounts of folic acid (10 cooked shoots provide 225 micrograms, or almost 50% of the daily requirement) and vitamin C (10 cooked shoots provide 25 mg). The present review describes the current literature concerning the pro-health properties of various parts of A. officinalis L., with a particular focus on its spears. It is based on studies identified in electronic databases, including PubMed, ScienceDirect, Web of Knowledge, Sci Finder, Web of Science, and SCOPUS. The data indicate that the various parts of A. officinalis, especially the spears, contain many bioactive compounds. However, although the extracts and chemical compounds isolated from A. officinalis, especially saponins, appear to have various biological properties and pro-health potential, these observations are limited to in vitro and animal in vivo models.

12.
Front Plant Sci ; 14: 1252196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885660

RESUMEN

The common hazel plant (Corylus avellana L., Betulaceae) is one of the most popular tree nuts widespread in Europe and Asia. In Italy, there are different cultivars among which the cultivar affording the valuable hazelnut "Tonda Gentile Trilobata," also known as "Tonda Gentile delle Langhe," covered by the Protected Geographical Indication (PGI) label "Nocciola Piemonte" (NP), known for its sweetness, cooked-bread aroma, and the low intensity of the burnt aroma. In order to obtain a detailed and in-depth characterization of the polar fraction of fresh (NPF) and roasted (NPR) kernels of NP the analysis of the n-butanol extracts by liquid chromatography coupled to electrospray ionization and high-resolution mass spectrometry (LC-ESI/HRMS) was carried out. Moreover, to evaluate the quantitative distribution of the most representative polar lipids in NPF and NPR, the analysis by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) was performed. To unambiguously identify the phenolic compounds highlighted by the LC-ESI/HRMS profiles, they were isolated from the n-butanol extract and characterized by Nuclear Magnetic Resonance (NMR) experiments. Finally, the ability of the isolated compounds to exert radical scavenging activity and to inhibit the lipid peroxidation induced by H2O2 or H2O2/Fe2+ was tested by Trolox Equivalent Antioxidant Capacity (TEAC) and thiobarbituric acid reactive substances (TBARS) assays, respectively. The LC-ESI/HRMS allowed to ascertain the presence of phenolic compounds and multiple classes of polar lipids including phospholipids, glycolipids, sphingolipids, and oxylipins. The quantitative analysis highlighted in NPR fraction a lipid content three times higher than in NPF, evidencing lyso-phospholipids and phospholipids as the most represented lipid classes in both NPF and NPR, together accounting for 94 and 97% of the considered lipids, respectively. Furthermore, phytochemical analysis permitted to identify flavonoid and diarylheptanoid derivatives. In particular, quercetin 3-O-ß-D-galactopyranosyl-(1→2)-ß-D-glucopyranoside and myricetin-3-O-α-L-rhamnopyranoside showed the highest antioxidant activity, exhibiting TEAC values similar to that of quercetin, used as reference compound (2.00 ± 0.03 and 2.06 ± 0.03 mM vs 2.03 ± 0.03 mM, respectively). Moreover, most of the tested compounds were found to reduce lipid peroxidation induced by H2O2 and H2O2/Fe2+ more than curcumin used as positive control, with myricetin-3-O-α-L-rhamnopyranoside determining 44.4 % and 34.1 % inhibition percentage, respectively.

13.
Biomed Pharmacother ; 165: 115220, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499458

RESUMEN

Paulownia Clon in Vitro 112, also called the Oxytree, is a fast-growing hybrid of two trees belonging to the Paulowniaceae family - P. elongata and P. fortunei. It demonstrates a wide range of biological effects (including antioxidant, anti-inflammatory, antibacterial, and neuroprotective) due to the high concentration of secondary metabolites. Our previous results showed an in vitro antioxidant and antiplatelet activity of the extract and four fractions (A-D) from the leaves of Paulownia Clon in Vitro 112 in human plasma and washed blood platelets. Here, we used a microchip flow chamber-based thrombus formation analysis system (T-TAS) and flow cytometry to assess the anticoagulant and antiplatelet activity of the extract and four fractions with different chemical content (A-D) from Paulownia Clon in Vitro 112 leaves in human whole blood. Two tested fractions: fraction C and D (at the concentrations of 5 and 50 µg/mL) inhibited the exposition of the active form of GPIIb/IIIa (integrin αIIbß3) on the surface of blood platelets stimulated by ADP and collagen. The antiplatelet activity of fraction C is likely due to its high verbascoside content and the presence of apigenin's derivatives. Fraction D contains triterpenoids, including ursolic, pomoleic, and maslinic acid, which could be responsible for decreased activation of ADP- and collagen-stimulated blood platelets. These results suggest that fractions C and D might be promising sources of phytochemicals with antiplatelet activity, which are important for prophylaxis and treatment of cardiovascular diseases associated with hyperactivation of blood platelets. However, further research is needed to ascertain which exact compounds and mechanisms are responsible for this phenomenon.


Asunto(s)
Plaquetas , Agregación Plaquetaria , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Colágeno/metabolismo , Hojas de la Planta
14.
Nutrients ; 15(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37049509

RESUMEN

It is known that phenolic compounds can alleviate the negative impact of oxidative stress and modulate hemostasis. However, the effect of extracts and phenolics from Glechoma hederacea L. on the biomarkers of these processes is not well documented. The aim of our study was to investigate the in vitro protective effects of one extract and three fractions (20, 60, and 85% fraction) from G. hederacea L. on oxidative stress and hemostasis. Phytochemical analysis showed that aerial parts of G. hederacea L. are rich in both phenolic acids (such as rosmarinic acid, neochlorogenic acid, and chlorogenic acid) and flavonoids (mainly rutin and glycoside derivatives of apigenin, quercetin, and luteolin). We observed that the 85% fraction (at three concentrations: 5, 10, and 50 µg/mL) inhibited protein carbonylation. Moreover, the extract and 85% fraction (at the concentration of 50 µg/mL) could reduce lipid peroxidation. All fractions and the extract were very effective at decreasing H2O2-induced DNA damage in PBM cells. The 85% fraction had the strongest protective potential against DNA oxidative damage. We also observed that the extract and fractions decreased PBM cell viability to a maximum of 65% after 24 h incubation. Our results indicate that the 85% fraction showed the strongest antioxidant potential. The main component of the 85% fraction was apigenin (26.17 ± 1.44 mg/g), which is most likely responsible for its strong antioxidant properties.


Asunto(s)
Antioxidantes , Lamiaceae , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Peróxido de Hidrógeno/toxicidad , Apigenina , Extractos Vegetales/farmacología , Extractos Vegetales/química , Anticoagulantes/farmacología , Anticoagulantes/química , Lamiaceae/química , Fitoquímicos/farmacología
15.
Nutrients ; 15(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36986152

RESUMEN

Berries are important components of the human diet, valued for their high content of nutrients and active compounds. Berry seeds are also important objects of scientific investigation as, in some cases, they can have a higher concentration of certain phytochemicals than other parts of the fruit. Moreover, they are often byproducts of the food industry that can be reused to make oil, extracts, or flour. We have reviewed available literature related to the chemical content and biological activity of seeds from five different berry species-red raspberry (Rubus idaeus L. and Rubus coreanus Miq.), strawberry (Fragaria x ananassa), grape (Vitis vinifera L.), sea buckthorn (Hippophae rhamnoides L.), and cranberry (Vaccinium macrocarpon Ait.). We have searched various databases, including PubMed, Web of Knowledge, ScienceDirect, and Scopus. Last search was conducted on 16.01.2023. Various preparations from berry seeds are valuable sources of bioactive phytochemicals and could be used as functional foods or to make pharmaceuticals or cosmetics. Some products, like oil, flour, or extracts, are already available on the market. However, many preparations and compounds still lack appropriate evidence for their effectiveness in vivo, so their activity should first be assessed in animal studies and clinical trials.


Asunto(s)
Fragaria , Hippophae , Rubus , Vaccinium macrocarpon , Animales , Humanos , Frutas/química , Semillas/química , Extractos Vegetales/química , Dieta , Fragaria/química , Hippophae/química , Vaccinium macrocarpon/química , Fitoquímicos/análisis
16.
Biomed Pharmacother ; 162: 114594, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36989726

RESUMEN

Uncontrolled blood platelet activation is an important risk factor of cardiovascular disease (CVDs). Various studies on phenolic compounds indicate that they have a protective effect on the cardiovascular system through different mechanisms, including the reduction of blood platelet activation. One of the plants that is particularly rich in phenolic compounds is sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson). The aim of the present study in vitro was to determine the anti-platelet properties of crude extracts isolated from leaves and twigs of E. rhamnoides (L.) A. Nelson in whole blood using flow cytometric and total thrombus-formation analysis system (T-TAS). In addition, the aim of our study was also analyze of blood platelet proteomes in the presence of different sea buckthorn extracts. A significant new finding is a decrease surface exposition of P-selectin on blood platelets stimulated by 10 µM ADP and 10 µg/mL collagen, and a decrease surface exposition of GPIIb/IIIa active complex on non-activated platelets and platelets stimulated by 10 µM ADP and 10 µg/mL collagen in the presence of sea buckthorn leaf extract (especially at the concentration 50 µg/mL). The twig extract also displayed antiplatelet potential. However, this activity was higher in the leaf extract than in the twig extract in whole blood. In addition, our present findings clearly demonstrate that investigated plant extracts have anticoagulant properties (measured by T-TAS). Therefore, the two tested extracts may be promising candidates for the natural anti-platelet and anticoagulant supplements.


Asunto(s)
Plaquetas , Hippophae , Anticoagulantes/farmacología , Activación Plaquetaria , Fenoles/farmacología , Extractos Vegetales/farmacología , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria , Hojas de la Planta
17.
Nutrients ; 15(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36771299

RESUMEN

Schisandra chinensis (S. chinensis) berries, originally a component of traditional herbal medicine in China, Korea, and other east Asian countries, are also valuable agents in modern phototherapy. S. chinensis berry preparations, including extracts and their chemical components, demonstrate anti-cancer, hepatoprotective, anti-inflammatory, and antioxidant properties, among others. These valuable properties, and their therapeutic potential, are conditioned by the unique chemical composition of S. chinensis berries, particularly their lignan content. About 40 of these compounds, mainly dibenzocyclooctane type, were isolated from S. chinensis. The most important bioactive lignans are schisandrin (also denoted as schizandrin or schisandrol A), schisandrin B, schisantherin A, schisantherin B, schisanhenol, deoxyschisandrin, and gomisin A. The present work reviews newly-available literature concerning the cardioprotective potential of S. chinensis berries and their individual components. It places special emphasis on the cardioprotective properties of the selected lignans related to their antioxidant and anti-inflammatory characteristis.


Asunto(s)
Lignanos , Schisandra , Schisandra/química , Frutas/química , Antioxidantes/farmacología , Lignanos/farmacología , Antiinflamatorios/farmacología
18.
Nutrients ; 15(3)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36771330

RESUMEN

The caper, from the Latin capra, meaning goat, is the common name for the salt-fermented floral buds of the perennial shrubs of the Capparis genus (Capparacea family). This genus is represented by about 250 species, including the very popular C. spinosa L. While the whole plant is edible, the aromatic floral buds are most widely consumed, being collected by hand prior to blooming, dried in the sun and pickled. Capers are usually served marinated in vinegar, brine or oil. They have a significant potential as dietary supplements due to their low calorie content and richness in bioactive phytochemicals. Numerous in vitro and in vivo studies have demonstrated that C. spinosa have various nutritional and biological properties, including antioxidant activity resulting from the presence of phenolic compounds. The present paper reviews the current literature concerning the biological properties of the fruits, buds, seeds, roots and leaves of C. spinosa, including their toxicity.


Asunto(s)
Capparis , Capparis/química , Antioxidantes/farmacología , Fenoles/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Suplementos Dietéticos
19.
Nutrients ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36771393

RESUMEN

Sea buckthorn (Hippophae rhamnoides L.) is a small tree, valued for its medicinal properties throughout the ages. Sea buckthorn berries and leaves are a known source of phytochemicals and have been used in the treatment of inflammation, oedema, hypertension, ulcers, and wounds in folk medicine. Sea buckthorn seeds are natural dietary sources of various bioactive compounds as well, but the number of studies on their content and biological properties is still insufficient. For the first time, we examined the phytochemical content and biological activity of sea buckthorn seeds in vitro. We have studied the effect of two extracts-from regular (no thermal processing) and roasted (thermally processed) sea buckthorn seeds-on the levels of oxidative stress induced by H2O2/Fe2+ in plasma, coagulation times, and white thrombus formation (measured by Total Thrombus-formation Analysis System-T-TAS). We observed that sea buckthorn seeds contain diverse flavonoids, mostly glycosides of isorhamnetin, kaempferol, and quercetin, as well as smaller amounts of proanthocyanidins and catechin, triterpenoid saponins, and a number of unidentified polar and hydrophobic compounds. Both extracts inhibited lipid peroxidation and protein carbonylation, but only the extract from roasted seeds decreased oxidation of thiol groups in plasma treated with H2O2/Fe2+. They did not alter coagulation times, but the extract from roasted seeds at the highest concentration (50 µg/mL) prolonged the time needed for white thrombus formation. The results indicate that sea buckthorn seeds have antioxidant activity that is not impaired by thermal processing and possess anticoagulant potential, but more research is needed in order to ascertain which compounds are responsible for these effects, especially in in vivo models.


Asunto(s)
Antioxidantes , Hippophae , Antioxidantes/análisis , Hippophae/química , Peróxido de Hidrógeno/análisis , Semillas/química , Frutas/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Extractos Vegetales/química , Hemostasis
20.
Nutrients ; 15(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678273

RESUMEN

Graviola (Annunona muricata L.), a plant growing in tropical regions, has many names and a range of ethnomedicinal uses. The leaves are used to treat insomnia, diabetes, cystitis, and headaches, the crushed seeds have anthelmintic properties, and the fruits are used in the preparation of ice creams, candy, syrups, shakes, and other beverages. The key active components are believed to be annonaceous acetogenins, with more than 100 such compounds having been isolated from A. muricata. The plant is also a source of a range of phenolic compounds, essential oils, alkaloids, flavonol triglycosides, and megastigmanes, together with various minerals, including Mg, Fe, Cu, K, and Ca. Its key phenolic compounds are rutin, kaempferol, and quercetin. This paper provides an overview of the current state of knowledge about the antioxidant properties of various graviola organs and their major constituents, based on a review of various electronic databases. However, few findings have been obtained from clinical trials, and few in vitro and animal studies suggest that graviola preparations have antioxidant properties; as such, the antioxidant potential of graviola, and its safety, remain unclear.


Asunto(s)
Annona , Antiinfecciosos , Antineoplásicos Fitogénicos , Animales , Antioxidantes/farmacología , Acetogeninas , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA