Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 6036, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247130

RESUMEN

Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.


Asunto(s)
Biomasa , Pradera , Herbivoria/fisiología , Nitrógeno/análisis , Fósforo/análisis , Intervalos de Confianza , Fertilizantes , Factores de Tiempo
2.
J Environ Qual ; 32(4): 1430-5, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12931899

RESUMEN

We evaluated the importance of floodplains for nutrient retention in two distributaries of the river Rhine (Waal and IJssel) by monitoring N and P retention in a body of water during downstream transport. We hypothesized that (i) retention of P is much larger than retention of N and (ii) nutrient retention increases with an increasing amount of the discharge flowing through floodplains (QF). The second hypothesis was tested by comparing retention between the rivers Waal (low QF) and IJssel (high QF), as well as at different discharges. Total nitrogen (TN) did not decrease significantly during downstream transport in both rivers, whereas 20 to 45% of total phosphorus (TP) disappeared during transport in the river IJssel. This difference between N and P retention-supporting the first hypothesis-was probably caused by differences in sedimentation through a much lower proportion of N adsorbed to particles than of P (2-3% of N vs. 50-70% of P). Phosphorus retention was only observed in the IJssel and not in the Waal, and absolute P retention (g P s(-1) km(-1)) in the IJssel increased with increasing QF. The second hypothesis was, nevertheless, not fully supported, because the percentage P retention (% of P load) decreased (instead of increased) with increasing QF. The percentage P retention increased with decreasing river depth and flow velocity; it seemed related to the efficiency of sediment trapping.


Asunto(s)
Nitrógeno/análisis , Fósforo/análisis , Abastecimiento de Agua , Monitoreo del Ambiente , Sedimentos Geológicos/química , Fenómenos Geológicos , Geología , Alemania , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...