Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AAPS J ; 26(2): 32, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459151

RESUMEN

In recent years, Generalized Modules for Membrane Antigens (GMMA) have received increased attention as an innovative vaccine platform against bacterial pathogens, particularly attractive for low- and middle-income countries because of manufacturing simplicity. The assessment of critical quality attributes (CQAs), product-process interactions, identification of appropriate in process analytical methods, and process modeling is part of a robust quality by design (QbD) framework to support further development and control of manufacturing processes. QbD implementation in the context of the GMMA platform will ensure robust manufacturing of batches with desired characteristics, facilitating technical transfer to local manufacturers, regulatory approval, and commercialization of vaccines based on this technology. Here, we summarize the methodology suggested, applied to a first step of GMMA manufacturing process.


Asunto(s)
Metilmetacrilatos , Vacunas
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256189

RESUMEN

Shigellosis, an acute gastroenteritis infection caused by Shigella species, remains a public health burden in developing countries. Recently, many outbreaks due to Shigella sonnei multidrug-resistant strains have been reported in high-income countries, and the lack of an effective vaccine represents a major hurdle to counteract this bacterial pathogen. Vaccine candidates against Shigella sonnei are under clinical development, including a Generalized Modules for Membrane Antigens (GMMA)-based vaccine. The mechanisms by which GMMA-based vaccines interact and activate human immune cells remain elusive. Our previous study provided the first evidence that both adaptive and innate immune cells are targeted and functionally shaped by the GMMA-based vaccine. Here, flow cytometry and confocal microscopy analysis allowed us to identify monocytes as the main target population interacting with the S. sonnei 1790-GMMA vaccine on human peripheral blood. In addition, transcriptomic analysis of this cell population revealed a molecular signature induced by 1790-GMMA mostly correlated with the inflammatory response and cytokine-induced processes. This also impacts the expression of genes associated with macrophages' differentiation and T cell regulation, suggesting a dual function for this vaccine platform both as an antigen carrier and as a regulator of immune cell activation and differentiation.


Asunto(s)
Antígenos de Grupos Sanguíneos , Gastroenteritis , Metilmetacrilatos , Vacunas , Humanos , Monocitos , Shigella sonnei/genética , Antígenos Bacterianos/genética
3.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140177

RESUMEN

Glycoconjugate vaccines play a major role in the prevention of infectious diseases worldwide, with significant impact on global health, enabling the polysaccharides to induce immunogenicity in infants and immunological memory. Tetanus toxoid (TT), a chemically detoxified bacterial toxin, is among the few carrier proteins used in licensed glycoconjugate vaccines. The recombinant full-length 8MTT was engineered in E. coli with eight individual amino acid mutations to inactivate three toxin functions. Previous studies in mice showed that 8MTT elicits a strong IgG response, confers protection, and can be used as a carrier protein. Here, we compared 8MTT to traditional carrier proteins TT and cross-reactive material 197 (CRM197), using different polysaccharides as models: Group A Streptococcus cell-wall carbohydrate (GAC), Salmonella Typhi Vi, and Neisseria meningitidis serogroups A, C, W, and Y. The persistency of the antibodies induced, the ability of the glycoconjugates to elicit booster response after re-injection at a later time point, the eventual carrier-induced epitopic suppression, and immune interference in multicomponent formulations were also evaluated. Overall, immunogenicity responses obtained with 8MTT glycoconjugates were compared to those obtained with corresponding TT and, in some cases, were higher than those induced by CRM197 glycoconjugates. Our results support the use of 8MTT as a good alternative carrier protein for glycoconjugate vaccines, with advantages in terms of manufacturability compared to TT.

4.
J Extracell Vesicles ; 11(11): e12247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36377074

RESUMEN

Vaccine platforms enable fast development, testing, and manufacture of more affordable vaccines. Here, we evaluated Generalized Modules for Membrane Antigens (GMMA), outer membrane vesicles (OMVs) generated by genetically modified Gram-negative bacteria, as a vaccine platform for viral pathogens. Influenza A virus hemagglutinin (HA), either physically mixed with GMMA (HA+STmGMMA mix), or covalently linked to GMMA surface (HA-STmGMMA conjugate), significantly increased antigen-specific humoral and cellular responses, with HA-STmGMMA conjugate inducing further enhancement than HA+STmGMMA mix. HA-STmGMMA conjugate protected mice from lethal challenge. The versatility for this platform was confirmed by conjugation of rabies glycoprotein (RABVG) onto GMMA through the same method. RABVG+STmGMMA mix and RABVG-STmGMMA conjugate exhibited similar humoral and cellular response patterns and protection efficacy as the HA formulations, indicating relatively consistent responses for different vaccines based on the GMMA platform. Comparing to soluble protein, GMMA was more efficiently taken up in vivo and exhibited a B-cell preferential uptake in the draining lymph nodes (LNs). Together, GMMA enhances immunity against viral antigens, and the platform works well with different antigens while retaining similar immunomodulatory patterns. The findings of our study imply the great potential of GMMA-based vaccine platform also against viral infectious diseases.


Asunto(s)
Antígenos Virales , Vacunas , Ratones , Animales , Membranas
5.
Vaccines (Basel) ; 10(7)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35891202

RESUMEN

Group A Streptococcus (GAS) causes about 500,000 annual deaths globally, and no vaccines are currently available. The Group A Carbohydrate (GAC), conserved across all GAS serotypes, conjugated to an appropriate carrier protein, represents a promising vaccine candidate. Here, we explored the possibility to use Generalized Modules for Membrane Antigens (GMMA) as an alternative carrier system for GAC, exploiting their intrinsic adjuvant properties. Immunogenicity of GAC-GMMA conjugate was evaluated in different animal species in comparison to GAC-CRM197; and the two conjugates were also compared from a techno-economic point of view. GMMA proved to be a good alternative carrier for GAC, resulting in a higher immune response compared to CRM197 in different mice strains, as verified by ELISA and FACS analyses. Differently from CRM197, GMMA induced significant levels of anti-GAC IgG titers in mice also in the absence of Alhydrogel. In rabbits, a difference in the immune response could not be appreciated; however, antibodies from GAC-GMMA-immunized animals showed higher affinity toward purified GAC antigen compared to those elicited by GAC-CRM197. In addition, the GAC-GMMA production process proved to be more cost-effective, making this conjugate particularly attractive for low- and middle-income countries, where this pathogen has a huge burden.

6.
Chem Sci ; 13(8): 2440-2449, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35310500

RESUMEN

The introduction of glycoconjugate vaccines marks an important point in the fight against various infectious diseases. The covalent conjugation of relevant polysaccharide antigens to immunogenic carrier proteins enables the induction of a long-lasting and robust IgG antibody response, which is not observed for pure polysaccharide vaccines. Although there has been remarkable progress in the development of glycoconjugate vaccines, many crucial parameters remain poorly understood. In particular, the influence of the conjugation site and strategy on the immunogenic properties of the final glycoconjugate vaccine is the focus of intense research. Here, we present a comparison of two cysteine selective conjugation strategies, elucidating the impact of both modifications on the structural integrity of the carrier protein, as well as on the immunogenic properties of the resulting glycoconjugate vaccine candidates. Our work suggests that conjugation chemistries impairing structurally relevant elements of the protein carrier, such as disulfide bonds, can have a dramatic effect on protein immunogenicity.

7.
Microorganisms ; 9(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835485

RESUMEN

Shigellosis is a diarrheal disease caused prevalently by Shigella flexneri and S. sonnei and representing a major global health risk, particularly in developing countries. Bacterial O-antigen (OAg) is the primary target of the host immune response and modifications of its oligosaccharide units, including O-acetylation, are responsible for the variability among the circulating S. flexneri serotypes. No vaccines are widely available against shigellosis and the understanding of the immunogenicity induced by the OAg is fundamental for the design of a vaccine that could cover the most prevalent Shigella serotypes. To understand whether a different O-acetylation pattern could influence the immune response elicited by S. flexneri OAg, we employed as a vaccine technology GMMA purified from S. flexneri 2a and 1b strains that were easily engineered to obtain differently O-acetylated OAg. Resulting GMMA were tested in mice, demonstrating not only no major impact of O-acetyl decorations on the immune response elicited by the two OAg against the homologous strains, but also that the O-acetylation of the Rhamnose III residue (O-factor 9), shared among serotypes 1b, 2a and 6, does not induce cross-reactive antibodies against these serotypes. This work contributes to the optimization of vaccine design against Shigella, providing indication about the ability of shared epitopes to elicit broad protection against S. flexneri serotypes and supporting the identification of critical quality attributes of OAg-based vaccines.

8.
Front Mol Biosci ; 8: 745360, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34722634

RESUMEN

Despite the considerable progress toward the eradication of meningococcal disease with the introduction of glycoconjugate vaccines, previously unremarkable serogroup X has emerged in recent years, recording several outbreaks throughout the African continent. Different serogroup X polysaccharide-based vaccines have been tested in preclinical trials, establishing the principles for further improvement. To elucidate the antigenic determinants of the MenX capsular polysaccharide, we generated a monoclonal antibody, and its bactericidal nature was confirmed using the rabbit serum bactericidal assay. The antibody was tested by the inhibition enzyme-linked immunosorbent assay and surface plasmon resonance against a set of oligosaccharide fragments of different lengths. The epitope was shown to be contained within five to six α-(1-4) phosphodiester mannosamine repeating units. The molecular interactions between the protective monoclonal antibody and the MenX capsular polysaccharide fragment were further detailed at the atomic level by saturation transfer difference nuclear magnetic resonance (NMR) spectroscopy. The NMR results were used for validation of the in silico docking analysis between the X-ray crystal structure of the antibody (Fab fragment) and the modeled hexamer oligosaccharide. The antibody recognizes the MenX fragment by binding all six repeating units of the oligosaccharide via hydrogen bonding, salt bridges, and hydrophobic interactions. In vivo studies demonstrated that conjugates containing five to six repeating units can produce high functional antibody levels. These results provide an insight into the molecular basis of MenX vaccine-induced protection and highlight the requirements for the epitope-based vaccine design.

9.
Front Immunol ; 12: 719315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594333

RESUMEN

Nanoparticle systems are being explored for the display of carbohydrate antigens, characterized by multimeric presentation of glycan epitopes and special chemico-physical properties of nano-sized particles. Among them, outer membrane vesicles (OMVs) are receiving great attention, combining antigen presentation with the immunopotentiator effect of the Toll-like receptor agonists naturally present on these systems. In this context, we are testing Generalized Modules for Membrane Antigens (GMMA), OMVs naturally released from Gram-negative bacteria mutated to increase blebbing, as carrier for polysaccharides. Here, we investigated the impact of saccharide length, density, and attachment site on the immune response elicited by GMMA in animal models, using a variety of structurally diverse polysaccharides from different pathogens (i.e., Neisseria meningitidis serogroup A and C, Haemophilus influenzae type b, and streptococcus Group A Carbohydrate and Salmonella Typhi Vi). Anti-polysaccharide immune response was not affected by the number of saccharides per GMMA particle. However, lower saccharide loading can better preserve the immunogenicity of GMMA as antigen. In contrast, saccharide length needs to be optimized for each specific antigen. Interestingly, GMMA conjugates induced strong functional immune response even when the polysaccharides were linked to sugars on GMMA. We also verified that GMMA conjugates elicit a T-dependent humoral immune response to polysaccharides that is strictly dependent on the nature of the polysaccharide. The results obtained are important to design novel glycoconjugate vaccines using GMMA as carrier and support the development of multicomponent glycoconjugate vaccines where GMMA can play the dual role of carrier and antigen. In addition, this work provides significant insights into the mechanism of action of glycoconjugates.


Asunto(s)
Antígenos Bacterianos/inmunología , Membrana Celular/inmunología , Glicoconjugados/inmunología , Polisacáridos Bacterianos/inmunología , Animales , Antígenos Bacterianos/química , Proteínas Portadoras/química , Proteínas Portadoras/inmunología , Membrana Celular/química , Femenino , Glicoconjugados/química , Inmunidad , Ratones , Modelos Animales , Polisacáridos Bacterianos/química , Salmonella typhimurium/inmunología , Vacunas/química , Vacunas/inmunología
10.
Vaccines (Basel) ; 9(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925465

RESUMEN

The pathogenic bacterium Shigella is a leading cause of diarrheal disease and mortality, disproportionately affecting young children in low-income countries. The increasing prevalence of antibiotic resistance in Shigella necessitates an effective vaccine, for which the bacterial lipopolysaccharide O-antigen is the primary target. S. flexneri serotype 6 has been proposed as a multivalent vaccine component to ensure broad protection against Shigella. We have previously explored the conformations of S. flexneri O-antigens from serogroups Y, 2, 3, and 5 that share a common saccharide backbone (serotype Y). Here we consider serogroup 6, which is of particular interest because of an altered backbone repeat unit with non-stoichiometric O-acetylation, the antigenic and immunogenic importance of which have yet to be established. Our simulations show significant conformational changes in serogroup 6 relative to the serotype Y backbone. We further find that O-acetylation has little effect on conformation and hence may not be essential for the antigenicity of serotype 6. This is corroborated by an in vivo study in mice, using Generalized Modules for Membrane Antigens (GMMA) as O-antigen delivery systems, that shows that O-acetylation does not have an impact on the immune response elicited by the S. flexneri serotype 6 O-antigen.

11.
Vaccines (Basel) ; 9(3)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800727

RESUMEN

Ensuring the stability of vaccines is crucial to successfully performing global immunization programs. Outer Membrane Vesicles (OMV) are receiving great attention as vaccine platforms. OMV are complex molecules and few data have been collected so far on their stability. OMV produced by bacteria, genetically modified to increase their spontaneous release, simplifying their production, are also known as Generalized Modules for Membrane Antigens (GMMA). We have performed accelerated stability studies on GMMA from different pathogens and verified the ability of physico-chemical and immunological methods to detect possible changes. High-temperature conditions (100 °C for 40 min) did not affect GMMA stability and immunogenicity in mice, in contrast to the effect of milder temperatures for a longer period of time (37 °C or 50 °C for 4 weeks). We identified critical quality attributes to monitor during stability assessment that could impact vaccine efficacy. In particular, specific recognition of antigens by monoclonal antibodies through competitive ELISA assays may replace in vivo tests for the potency assessment of GMMA-based vaccines.

13.
Chemistry ; 26(31): 6944, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32390224

RESUMEN

Invited for the cover of this issue is the group of Roberto Adamo at GlaxoSmithKline Research Center, Siena, and colleagues at The University of the Basque Country and Basque Research Technology Alliance. The image depicts a tactical plan with the different elements of the research as part of the team. Read the full text of the article at 10.1002/chem.202000284.


Asunto(s)
Polisacáridos/síntesis química , Streptococcus/química , Humanos , Polisacáridos/química , Vacunas Sintéticas
14.
Chemistry ; 26(31): 7018-7025, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32058627

RESUMEN

Identification of glycan functional epitopes is of paramount importance for rational design of glycoconjugate vaccines. We recently mapped the structural epitope of the capsular polysaccharide from type III Group B Streptococcus (GBSIII), a major cause of invasive disease in newborns, by using a dimer fragment (composed of two pentasaccharide repeating units) obtained by depolymerization complexed with a protective mAb. Although reported data had suggested a highly complex epitope contained in a helical structure composed of more than four repeating units, we showed that such dimer conjugated to a carrier protein with a proper glycosylation degree elicited functional antibodies comparably to the full-length conjugated polysaccharide. Here, starting from the X-ray crystallographic structure of the polysaccharide fragment-mAb complex, we synthesized a hexasaccharide comprising exclusively the relevant positions involved in binding. Combining competitive surface plasmon resonance and saturation transfer difference NMR spectroscopy as well as in-silico modeling, we demonstrated that this synthetic glycan was recognized by the mAb similarly to the dimer. The hexasaccharide conjugated to CRM197 , a mutant of diphtheria toxin, elicited a robust functional immune response that was not inferior to the polysaccharide conjugate, indicating that it may suffice as a vaccine antigen. This is the first evidence of an X-ray crystallography-guided design of a synthetic carbohydrate-based conjugate vaccine.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Epítopos/química , Glicoconjugados/química , Polisacáridos/inmunología , Streptococcus agalactiae/química , Streptococcus agalactiae/inmunología , Vacunas Conjugadas/química , Vacunas Conjugadas/inmunología , Humanos , Vacunas Sintéticas
15.
Chemistry ; 25(71): 16277-16287, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31506992

RESUMEN

Group B Streptococcus serotypes Ia and Ib capsular polysaccharides are key targets for vaccine development. In spite of their immunospecifity these polysaccharides share high structural similarity. Both are composed of the same monosaccharide residues and differ only in the connection of the Neu5Acα2-3Gal side chain to the GlcNAc unit, which is a ß1-4 linkage in serotype Ia and a ß1-3 linkage in serotype Ib. The development of efficient regioselective routes for GlcNAcß1-3[Glcß1-4]Gal synthons is described, which give access to different group B Streptococcus (GBS) Ia and Ib repeating unit frameshifts. These glycans were used to probe the conformation and molecular dynamics of the two polysaccharides, highlighting the different presentation of the protruding Neu5Acα2-3Gal moieties on the polysaccharide backbones and a higher flexibility of Ib polymer relative to Ia, which can impact epitope exposure.


Asunto(s)
Cápsulas Bacterianas/química , Polisacáridos Bacterianos/síntesis química , Streptococcus/metabolismo , Cápsulas Bacterianas/metabolismo , Glucosamina/química , Glicosilación , Conformación Molecular , Polisacáridos Bacterianos/química , Serogrupo , Estereoisomerismo
16.
mBio ; 9(3)2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29844111

RESUMEN

Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Bibersteinia trehalosi, and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis.IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy. The new capsule polymerase family described here vastly increases the toolbox of enzymes available for biotechnology purposes. Representatives are abundantly found in human pathogens but also in animal pathogens, paving the way for the exploitation of polymerases for the development of a new generation of vaccines for animal husbandry.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/enzimología , Familia de Multigenes , Fosfotransferasas/metabolismo , Ácidos Teicoicos/metabolismo , Cápsulas Bacterianas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Glicosiltransferasas/química , Glicosiltransferasas/genética , Bacterias Gramnegativas/química , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Polímeros/química , Polímeros/metabolismo , Ácidos Teicoicos/análisis
17.
ACS Chem Biol ; 13(4): 984-994, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29481045

RESUMEN

Studies on the polymerization mode of Neisseria meningitidis serogroup X capsular polymerase CsxA recently identified a truncated construct that can be immobilized and used for length controlled on-column production of oligosaccharides. Here, we combined the use of a synthetic acceptor bearing an appendix for carrier protein conjugation and the on-column process to a novel chemo-enzymatic strategy. After protein coupling of the size optimized oligosaccharide produced by the one-pot elongation procedure, we obtained a more homogeneous glycoconjugate compared to the one previously described starting from the natural polysaccharide. Mice immunized with the conjugated fully synthetic oligomer elicited functional antibodies comparable to controls immunized with the current benchmark MenX glycoconjugates prepared from the natural capsule polymer or from fragments of it enzymatically elongated. This pathogen-free technology allows the fast total in vitro construction of predefined bacterial polysaccharide fragments. Compared to conventional synthetic protocols, the procedure is more expeditious and drastically reduces the number of purification steps to achieve the oligomers. Furthermore, the presence of a linker for conjugation in the synthetic acceptor minimizes manipulations on the enzymatically produced glycan prior to protein conjugation. This approach enriches the methods for fast construction of complex bacterial carbohydrates.


Asunto(s)
Glicoconjugados/síntesis química , Neisseria meningitidis/inmunología , Serogrupo , Vacunas Conjugadas , Inmunidad Adaptativa , Animales , Glicoconjugados/inmunología , Ratones , Polisacáridos Bacterianos/síntesis química
18.
Angew Chem Int Ed Engl ; 56(47): 14963-14967, 2017 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-28968001

RESUMEN

A four-membered oxygen ring (oxetane) can be readily grafted into native peptides and proteins through site-selective bis-alkylation of cysteine residues present as disulfides under mild and biocompatible conditions. The selective installation of the oxetane graft enhances stability and activity, as demonstrated for a range of biologically relevant cyclic peptides, including somatostatin, proteins, and antibodies, such as a Fab arm of the antibody Herceptin and a designed antibody DesAb-Aß against the human Amyloid-ß peptide. Oxetane grafting of the genetically detoxified diphtheria toxin CRM197 improves significantly the immunogenicity of this protein in mice, which illustrates the general utility of this strategy to modulate the stability and biological activity of therapeutic proteins containing disulfides in their structures.


Asunto(s)
Disulfuros/química , Éteres Cíclicos/química , Estabilidad Proteica , Proteínas/química , Alquilación , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/inmunología , Animales , Anticuerpos/inmunología , Cisteína/química , Humanos , Ratones , Péptidos Cíclicos/química , Conformación Proteica
19.
Proc Natl Acad Sci U S A ; 114(19): 5017-5022, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439022

RESUMEN

Despite substantial progress in the prevention of group B Streptococcus (GBS) disease with the introduction of intrapartum antibiotic prophylaxis, this pathogen remains a leading cause of neonatal infection. Capsular polysaccharide conjugate vaccines have been tested in phase I/II clinical studies, showing promise for further development. Mapping of epitopes recognized by protective antibodies is crucial for understanding the mechanism of action of vaccines and for enabling antigen design. In this study, we report the structure of the epitope recognized by a monoclonal antibody with opsonophagocytic activity and representative of the protective response against type III GBS polysaccharide. The structure and the atomic-level interactions were determined by saturation transfer difference (STD)-NMR and X-ray crystallography using oligosaccharides obtained by synthetic and depolymerization procedures. The GBS PSIII epitope is made by six sugars. Four of them derive from two adjacent repeating units of the PSIII backbone and two of them from the branched galactose-sialic acid disaccharide contained in this sequence. The sialic acid residue establishes direct binding interactions with the functional antibody. The crystal structure provides insight into the molecular basis of antibody-carbohydrate interactions and confirms that the conformational epitope is not required for antigen recognition. Understanding the structural basis of immune recognition of capsular polysaccharide epitopes can aid in the design of novel glycoconjugate vaccines.


Asunto(s)
Cápsulas Bacterianas/química , Epítopos/química , Oligosacáridos/química , Polisacáridos Bacterianos/química , Streptococcus agalactiae/química , Animales , Conformación de Carbohidratos , Cristalografía por Rayos X , Ratones , Conejos
20.
NPJ Vaccines ; 1: 16017, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-29263856

RESUMEN

Invasive meningococcal disease (IMD) is a global health problem and vaccination has proven the most effective way of disease control. Neisseria meningitidis serogroup X (NmX) is an emerging threat in the African sub-Saharan meningitis belt, but no vaccine is available today. Leading vaccines against Nm are glycoconjugates, in which capsular polysaccharides isolated from large-scale pathogen cultures are conjugated to adjuvant proteins. Though safe and efficacious even in infants, high costs and biohazard associated with the production limit abundant application of glycoconjugate vaccines particularly in the most afflicted nations. An existing NmX vaccine candidate (CPSXn-CRM197) produced by established protocols from NmX capsule polysaccharide (CPSX) has been shown to elicit high bactericidal immunoglobulin G titres in mice. Here we describe the scalable in vitro synthesis of CPSXiv from chemically pure precursors by the use of recombinant NmX capsule polymerase. Application of the described coupling chemistry gives CPSXiv-CRM197, which in mouse vaccination experiments behaves identical to the benchmark CPSXn-CRM197. Excluding any biohazards, this novel process represents a paradigm shift in vaccine production and a premise towards vaccine manufacturing in emerging economies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...