Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 34(47)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36174547

RESUMEN

The structural, electronic, lattice dynamics, electron-phonon (el-ph) coupling, and superconducting (SC) properties of the alkali-metal hydride RbH, metallized through electron-doping by the construction of the solid-solution Rb1-xSrxH, are systematically analyzed as a function of Sr-content within the framework of density functional perturbation and Migdal-Eliashberg theories, taking into account the effect of zero-point energy contribution by the quasi-harmonic approximation. For the entire studied range of Sr-content, steady increments of the el-ph coupling constant and the SC critical temperature are found with progressive alkaline-earth metal content through electron-doping, reaching the values ofλ = 1.92 andTc=51.3(66.1)K withµ∗= 0.1(0). The steady rise of such quantities as a function of Sr-content is consequence of the metallization of the hydride as an increase of density of states at the Fermi level is observed, as well as the softening of the phonon spectrum, mainly coming from H-optical modes. Our results indicate that electron-doping on metal-hydrides is an encouraging alternative to look for superconductivity without applied pressure.

2.
J Phys Condens Matter ; 29(14): 145401, 2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28251959

RESUMEN

Alkali and alkali-earth metal hydrides have high volumetric and gravimetric hydrogen densities, but due to their high thermodynamic stability, they possess high dehydrogenation temperatures which may be reduced by transforming these compounds into less stable states/configurations. We present a systematic computational study of the electron doping effects on the stability of the alkali metal hydride NaH substituted with Mg, using the self-consistent version of the virtual crystal approximation to model the alloy Na1-x Mg x H. The phonon dispersions were studied paying special attention to the crystal stability and the correlations with the electronic structure taking into account the zero point energy contribution. We found that substitution of Na by Mg in the hydride invokes a reduction of the frequencies, leading to dynamical instabilities for Mg content of 25%. The microscopic origin of these instabilities could be related to the formation of ellipsoidal Fermi surfaces centered at the L point due to the metallization of the hydride by the Mg substitution. Applying the quasiharmonic approximation, thermodynamic properties like heat capacities, vibrational entropies and vibrational free energies as a function of temperature at zero pressure are obtained. These properties determine an upper temperature for the thermodynamic stability of the hydride, which decreases from 600 K for NaH to 300 K at 20% Mg concentration. This significant reduction of the stability range indicates that dehydrogenation could be favoured by electron doping of NaH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA