Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 254, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31937756

RESUMEN

Environmental DNA (eDNA) analysis allows the simultaneous examination of organisms across multiple trophic levels and domains of life, providing critical information about the complex biotic interactions related to ecosystem change. Here we used multilocus amplicon sequencing of eDNA to survey biodiversity from an eighteen-month (2015-2016) time-series of seawater samples from Monterey Bay, California. The resulting dataset encompasses 663 taxonomic groups (at Family or higher taxonomic rank) ranging from microorganisms to mammals. We inferred changes in the composition of communities, revealing putative interactions among taxa and identifying correlations between these communities and environmental properties over time. Community network analysis provided evidence of expected predator-prey relationships, trophic linkages, and seasonal shifts across all domains of life. We conclude that eDNA-based analyses can provide detailed information about marine ecosystem dynamics and identify sensitive biological indicators that can suggest ecosystem changes and inform conservation strategies.


Asunto(s)
Biodiversidad , ADN Ambiental/genética , Agua de Mar , California , Análisis por Conglomerados , Código de Barras del ADN Taxonómico , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Biología Marina , Estaciones del Año , Agua de Mar/química , Factores de Tiempo
2.
Ecol Evol ; 9(3): 1029-1040, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30805138

RESUMEN

Environmental DNA (eDNA) is the DNA suspended in the environment (e.g., water column), which includes cells, gametes, and other material derived from but not limited to shedding of tissue, scales, mucus, and fecal matter. Amplifying and sequencing marker genes (i.e., metabarcoding) from eDNA can reveal the wide range of taxa present in an ecosystem through analysis of a single water sample. Metabarcoding of eDNA provides higher resolution data than visual surveys, aiding in assessments of ecosystem health. This study conducted eDNA metabarcoding of two molecular markers (cytochrome c oxidase I (COI) and 18S ribosomal RNA (rRNA) genes) to survey eukaryotic diversity across multiple trophic levels in surface water samples collected at three sites along the coral reef tract within the Florida Keys National Marine Sanctuary (FKNMS) during four research cruises in 2015. The 18S rRNA gene sequences recovered 785 genera while the COI gene sequences recovered 115 genera, with only 33 genera shared between the two datasets, emphasizing the complementarity of these marker genes. Community composition for both genetic markers clustered by month of sample collection, suggesting that temporal variation has a larger effect on biodiversity than spatial variability in the FKNMS surface waters. Sequences from both marker genes were dominated by copepods, but each marker recovered distinct phytoplankton groups, with 18S rRNA gene sequences dominated by dinoflagellates and COI sequences dominated by coccolithophores. Although eDNA samples were collected from surface waters, many benthic species such as sponges, crustaceans, and corals were identified. These results show the utility of eDNA metabarcoding for cataloging biodiversity to establish an ecosystem baseline against which future samples can be compared in order to monitor community changes.

3.
Viruses ; 10(12)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30558156

RESUMEN

The Arctic marine environment experiences dramatic seasonal changes in light and nutrient availability. To investigate the influence of seasonality on Arctic marine virus communities, five research cruises to the west and north of Svalbard were conducted across one calendar year, collecting water from the surface to 1000 m in depth. We employed metabarcoding analysis of major capsid protein g23 and mcp genes in order to investigate T4-like myoviruses and large dsDNA viruses infecting prokaryotic and eukaryotic picophytoplankton, respectively. Microbial abundances were assessed using flow cytometry. Metabarcoding results demonstrated that seasonality was the key mediator shaping virus communities, whereas depth exerted a diversifying effect within seasonal virus assemblages. Viral diversity and virus-to-prokaryote ratios (VPRs) dropped sharply at the commencement of the spring bloom but increased across the season, ultimately achieving the highest levels during the winter season. These findings suggest that viral lysis may be an important process during the polar winter, when productivity is low. Furthermore, winter viral communities consisted of Operational Taxonomic Units (OTUs) distinct from those present during the spring-summer season. Our data provided a first insight into the diversity of viruses in a hitherto undescribed marine habitat characterized by extremes in light and productivity.


Asunto(s)
Ecosistema , Eucariontes/virología , Microbiota , Células Procariotas/virología , Estaciones del Año , Regiones Árticas , Biodiversidad , Código de Barras del ADN Taxonómico , Virus ADN/genética , Eucariontes/fisiología , Citometría de Flujo , Myoviridae/genética , Fitoplancton/virología , Células Procariotas/fisiología , Agua de Mar/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...